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Abstract. Formalizing mathematical argument is a fascinating activ-
ity in itself and (we hope!) also bears important practical applications.
While traditional proof theory investigates deducibility of an individual
statement from a collection of premises, a mathematical proof, with its
structure and continuity, can hardly be presented as a single sequent or
a set of logical formulas. What is called “mathematical text”, as used in
mathematical practice through the ages, seems to be more appropriate.
However, no commonly adopted formal notion of mathematical text has
emerged so far.

In this paper, we propose a formalism which aims to reflect natural
(human) style and structure of mathematical argument, yet to be appro-
priate for automated processing: principally, verification of its correctness
(we consciously use the word rather than “soundness” or “validity”).

We consider mathematical texts that are formalized in the ForTheL
language (brief description of which is also given) and we formulate a
point of view on what a correct mathematical text might be. Logical
notion of correctness is formalized with the help of a calculus. Practically,
these ideas, methods and algorithms are implemented in a proof assistant
called SAD. We give a short description of SAD and a series of examples
showing what can be done with it.

1 Introduction

The question in the title of the paper is one to which we would like to get an
answer formally. What we need to this aim is: a formal language to write down
texts, a formal notion of correctness, a formal reasoning facility. And no matter
what the content of the text in question is.

The idea to use a formal language along with formal symbolic manipulations to
solve complex “common” problems, already appeared in G.W. Leibniz’s writings
(1685). The idea seemed to obtain more realistic status only in the early sixties
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of the last century when first theorem proving programs were created [1]. It is
worth noting how ambitious was the title of Wang’s article! Numerous attempts
to “mechanize” mathematics led to less ambitious and more realistic idea of
“computer aided” mathematics as well as to the notion of “proof assistant” —
a piece of software that is able to do some more or less complex deductions for
you. Usually one has in mind either long but routine inferences or a kind of
case analysis with enormously large number of possible cases. Both situations
are embarrassing and “fault intolerant” for humans.

Mathematical text is not a simple sequence of statements, neither a linear
representation of a sequent tree, nor a λ-term coding a proof. It is a complex ob-
ject that contains axioms, definitions, theorems, and proofs of various kinds (by
contradiction, by induction, by case analysis, etc). What its “correctness” might
stand for? The formal semantics of a text can be given by packing the whole text
in a single statement and considering the corresponding logical formula (which
we may call the formula image of the text). Then the text is declared correct
whenever its formula image is deducible in the underlying logic. The approach
is simple, theoretically transparent but absolutely impracticable, e.g. the precise
notion of correctness obtained in this way can hardly be considered as a formal
specification of a proof assistant we would like to implement. That’s why we
develop a specific notion of text correctness that, though being less straightfor-
ward, can be formalized with the help of a logical calculus on one hand and can
serve as a formal specification on the other.

Our approach to mathematical text correctness is implemented in the proof
assistant called SAD (System for Automated Deduction). The SAD project is
the continuation of a project initiated by academician V. Glushkov at the Insti-
tute for Cybernetics in Kiev more than 30 years ago [2]. The title of the original
project was “Evidence Algorithm” and its goal was to help a working mathe-
matician to verify long and tiresome but routine reasonings. To implement that
idea, three main components had to be developed: an inference engine (we call
it prover below) that implements the basic level of evidence, an extensible col-
lection of tools (we call it reasoner) to reinforce the basic engine, and a formal
input language which must be close to natural mathematical language and easy
to use. Today, a working version of the SAD system exists [3,4,5] and is available
online at http://nevidal.org.ua.

What is the place of SAD in the world of proof assistants w.r.t. proof represen-
tation style? Actually, we observe four major approaches to formal presentation
of a mathematical proof (see also [6] for an interesting and detailed comparison).

Interactive proof assistants, such as Coq [7], Isabelle [8], PVS [9], or HOL
derivatives [10], work with “imperative” proofs, series of tactic invocations.

Systems based on the Curry-Howard isomorphism, such as de Bruijn’s Au-
tomath [11] or Coq, consider a proof of a statement as a lambda term inhabiting
a type that corresponds to the statement. Since writing such a proof directly
is difficult and time-consuming, modern systems of the kind let user build a
proof in an interactive tactic-based fashion and construct the final proof term
automatically.
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The third branch deals with “declarative” proofs, which are structured col-
lections of hypotheses, conjectures and claims expressed in the same language
as the axioms and theorems themselves. The Mizar system [12] is the oldest and
most known proof assistant working with proofs of declarative style. Isabelle,
with introduction of Isar [13], accepts declarative proofs, too. Declarative proof
presentation is employed and thoroughly studied in the works on Mathematical
Vernacular started by N. de Bruijn [11] and later extended to Weak Type Theory
[14,15] and MathLang [16]. In particular, MathLang and the ForTheL language,
presented below, share a lot of similar traits owed to the common striving for a
natural-like formal mathematical language.

Finally, there are systems that do not use user-given proofs and rely instead
on proof generation methods: planning, rewriting, or inference search facilities to
deduce each claim from premises and previously proved statements. The systems
ACL2 (successor to Nqthm) [17], λClam [18], Theorema [19] and any classical
automated prover (e.g. Otter) can be considered as proof assistants of the kind.

In a general setting, SAD may be positioned as a declarative style proof
verifier that accepts input texts written in the special formal language ForTheL
[20,4], uses an automated first-order prover as the basic inference engine and
possesses an original reasoner (which includes, in particular, a powerful method
of definition expansion).

The rest of the paper is organized as follows. In Section 2, we briefly describe
the ForTheL language and write a ForTheL proof of Tarski’s fixed point theorem.
We define correctness of a ForTheL text with the help of a logical calculus in
Section 3. We illustrate this calculus by verifying a simple text in Section 4. We
conclude with a brief list of experiments on formalization performed in SAD.

2 ForTheL Language

Like any usual mathematical text, a ForTheL text consists of definitions, as-
sumptions, affirmations, theorems, proofs, etc. Figure 1 gives an idea of what a
ForTheL text looks like.

The syntax of a ForTheL sentence follows the rules of English grammar. Sen-
tences are built of units: statements, predicates, notions (that denote classes
of objects) and terms (that denote individual entities). Units are composed of
syntactical primitives: nouns which form notions (e.g. “subset of”) or terms
(“closure of”), verbs and adjectives which form predicates (“belongs to”,
“compact”), symbolic primitives that use a concise symbolic notation for pred-
icates and functions and allow to consider usual quantifier-free first-order for-
mulas as ForTheL statements. Of course, just a little fragment of English is
formalized in the syntax of ForTheL.

There are three kinds of sentences in the ForTheL language: assumptions, se-
lections, and affirmations. Assumptions serve to declare variables or to provide
some hypotheses for the following text. For example, the following sentences are
typical assumptions: “Let S be a finite set.”, “Assume that m is greater
than n.”. Selections state the existence of representatives of notions and can
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be used to declare variables, too. Here follows an example of a selection: “Take
an even prime number X.”. Finally, affirmations are simply statements: “If p
divides n - p then p divides n.”. The semantics of a sentence is determined by
a series of transformations that convert a ForTheL statement to a first-order for-
mula, so called formula image. For example, the formula image of the statement
“all closed subsets of any compact set are compact” is:

∀ A ((A is a set ∧ A is compact) ⊃
∀ B ((B is a subset of A ∧ B is closed) ⊃ B is compact))

The sections of ForTheL are: sentences,

Theorem.

proof.

proof.

end.

qed.

Lemma.

Definition.
preliminaries

Fig. 1. ForTheL text’s structure

sentences with proofs, cases, and top-level
sections: axioms, definitions, signature exten-
sions, lemmas, and theorems. A top-level sec-
tion is a sequence of assumptions concluded
by an affirmation. Proofs attached to affirma-
tions and selections are simply sequences of
low-level sections. A case section begins with
a special assumption called case hypothesis
which is followed by a sequence of low-level
sections (the “proof” of a case).

Any section A or sequence of sections Δ
has a formula image, denoted |A| or, respec-
tively, |Δ|. The image of a sentence with a
proof is the same as the image of that sentence
taken without proof. The image of a case sec-
tion is the implication (H ⊃ thesis), where
H is the formula image of the case hypothesis
and thesis is a placeholder for the statement
being proved (see Section 3). The formula image of a top-level section is simply
the image of the corresponding sequence of sentences.

The formula image of a sequence of sections A, Δ is an existentially quan-
tified conjunction ∃xA(|A| ∧ |Δ|), whenever A is a conclusion (affirmation, se-
lection, case section, lemma, theorem); or a universally quantified implication
∀xA(|A| ⊃ |Δ|), whenever A is a hypothesis (assumption, axiom, definition, sig-
nature extension). Here, xA denotes the set of variables declared in A and can
only be non-empty when A is an assumption or a selection. This set depends on
the logical context of A, since any variable which is declared above A can not be
redeclared in A. The formula image of the empty sequence is �, the truth.

In this syntax, we can express various proof schemes like proof by contra-
diction, by case analysis, and by general induction. The last scheme merits
special consideration. Whenever an affirmation is marked to be proved by in-
duction, the system constructs an appropriate induction hypothesis and inserts
it into the statement to be verified. The induction hypothesis mentions a bi-
nary relation which is declared to be a well-founded ordering, hence, suitable for
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induction proofs. Note that we cannot express the very property of well-
foundness in ForTheL (since it is essentially a first-order language), so that
the correctness of this declaration is unverifiable and we take it for granted.
After that transformation, the proof and the transformed statement can be ver-
ified in a first-order setting, and the reasoner of SAD has no need in specific
means to build induction proofs. The semantics of this and other proof schemes
is considered in more detail in the next section.

Is ForTheL practical as a formalization language? Our numerous experiments
show that rather often a ForTheL text is sufficiently close to its hand-made
prototype. Consider for example an excerpt of a verified formalization of the
Tarski’s fixed point theorem:

Definition DefCLat. A complete lattice is a set S such that
every subset of S has an infimum in S and a supremum in S.

Definition DefMono. f is monotone iff for all x,y << Dom f
x <= y => f(x) <= f(y).

Theorem Tarski.
Let U be a complete lattice and f be an monotone function on U.
Let S be the set of fixed points of f.
S is a complete lattice.

Proof.
Let T be a subset of S.
Let us show that T has a supremum in S.
Take P = { x << U | f(x) <= x and x is an upper bound of T in U }.
Take an infimum p of P in U.
f(p) is a lower bound of P in U and an upper bound of T in U.
Hence p is a fixed point of f and a supremum of T in S.

end.
Let us show that T has an infimum in S.
Take Q = { x << U | x <= f(x) and x is a lower bound of T in U }.
Take a supremum q of Q in U.
f(q) is an upper bound of Q in U and a lower bound of T in U.
Hence q is a fixed point of f and an infimum of T in S.

end.
qed.

3 Text Correctness

We distinguish two types of correctness of a well-formed ForTheL text: ontolog-
ical and logical.

Ontological correctness means that the text in question contains no occurrence
of a symbol (constant, function, notion or relation) that comes from nowhere.
First, every symbol must be either a signature symbol or be introduced by a defi-
nition. Second, in every occurrence of a symbol, the arguments, if any, must satisfy
the guards of the corresponding definition or signature extension. Since ForTheL
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is a one-sorted and untyped language, these guards can be arbitrary logical formu-
las. Therefore, the latter condition cannot be checked by purely syntactical means
nor by type inference of any kind. Instead, it requires proving statements about
terms inside complex formulas, possibly, under quantifiers. Such reasoning can be
performed in a sound way using the notion of local images [21].

Ontological correctness is to ForTheL what type correctness is to typed lan-
guages. It allows early detection of formalization errors which otherwise could
hardly be detected. Indeed, accidental ontological incorrectness most often im-
plies logical incorrectness. However, it is much harder to trace a failure log of a
prover back to an invalid occurrence than to discover it in the first place. Also,
during ontological verification we obtain some important knowledge about the
text which will be used later in logical verification.

x = DVΓ (F ) Γ � ∀x (F ⊃ G′) ⊃ G Γ, (assume F ) �G′ Δ

Γ �G (assume ΘG(F )), Δ

DVΓ (F ) = ∅ Γ �F Λ Γ � (F ∧ G′) ⊃ G Γ, (affirm F [Λ]) �G′ Δ

Γ �G (affirm ΘG(F ) [Λ]), Δ

x = DVΓ (F ) Γ �∃x F Λ Γ � ∃x (F ∧ G′) ⊃ G Γ, (select F [Λ]) �G′ Δ

Γ �G (select ΘG(F ) [Λ]), Δ

DVΓ (F ) = ∅ Γ, (assume F ) �G Λ Γ, (case (F ⊃ G) [Λ]) �G∨F Δ

Γ �G (case (F ⊃ thesis) [Λ]), Δ

Γ �IT≺
t (G) Δ

Γ �G Δ

DVΓ,Λ(IH≺
t (G)) = ∅ Γ �IT≺

t (G) Λ, (assume IH≺
t (G)), Δ

Γ �G Λ, Δ

Γ � G

Γ �G

Γ �� Λ Γ, (toplevel |Λ| [Λ]) �� Δ

Γ �� (toplevel |Λ| [Λ]), Δ

Γ, (posit F ) �� Δ

Γ �� (posit F ), Δ

Fig. 2. Calculus of Correctness CTC

Logical correctness is imposed on particular affirmations in the text: theo-
rems, lemmas, intermediate statements in proofs. Any such affirmation must be
deducible from its logical predecessors.

In what follows, a ForTheL section A will be considered as a triple (T |A| [Λ]),
where T denotes the section type, |A| is the formula image of A, and Λ is the
sequence of subsections of A, if any. The type of A can be of the following:
toplevel for any top-level section (axiom, definition, signature extension, the-
orem, lemma), case for a case section, assume for an assumption, select for
a selection, affirm for an affirmation, posit for a postulate. Several remarks
should be made here. A sentence with a supplied proof is considered to be of
the same type as the same sentence without proof. They differ only in the third
component of the triple, the list of subsections, which is empty for a sentence
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without proof. Recall that the formula image of a sentence does not depend on
presence of a proof, too. In a case section, the case hypothesis belongs to the
formula image of the section and does not appear among its subsections. A pos-
tulate is an affirmation at the end of an axiom, definition, or signature extension;
in other words, an affirmation which is not meant to be proved.

A formula F is logically correct in view of a sequence of sections Γ (the logical
context of F ), denoted Γ � F , whenever F can be deduced in the classical
first-order predicate calculus from the formula images of sections from Γ .

Logical correctness of a ForTheL text is deduced from logical correctness of
particular formulas in view of appropriate sets of premises according to the
Calculus of Text Correctness, or CTC, given in Figure 2.

In CTC, we infer sequents of the form Γ �GΔ. Only those sequents are allowed
where every free variable of G occurs free in Γ (FV(G) ⊆ FV(Γ )), and neither
Γ nor G contain occurrences of thesis.

In such a sequent, Δ is a sequence of sections whose correctness is being
verified and Γ is a sequence of sections that logically precede Δ. The formula G
is a current thesis: a formula which we want to deduce from Γ with the help of
auxiliary reasoning in Δ (note the rule Γ�G

Γ�G
). Verification consists in counter-

applying the rules of the calculus, reducing the sequent Γ �G Δ to �-premises
which are to be checked directly.

A ForTheL text Δ is said to be logically correct whenever ��Δ can be inferred.
The expression ΘG(F ) denotes the formula F where some occurrences of G

are replaced with thesis. There may be several ΘG(F ) for given F and G. One
can consider ΘG(F ) as an abbreviated form of F ; when we counter-apply the
rules of CTC during verification, we pass from ΘG(F ) back to F , i.e. we expand
the abbreviation and eliminate the placeholder thesis.

The expression DVΓ (F ) stands for the set of variables which are declared in
the formula F in view of Γ . Basically, that means that x does not occur freely in
Γ and F “says” that x belongs to some class described by a notion (like in “x is
a fixed point of f”). In a similar fashion, we define DVΓ (A) and DVΓ (Δ)
(with the proviso that only assumptions and selections can declare variables).
Recall that the formula image of a sequence of sections, |Δ| actually depends on
DVΓ (Δ) and, hence, on Γ . Note that any free variable in a well-formed text must
be declared either in that very sentence or somewhere above, so that DVΓ (A)
contains those and only those free variables of A which do not occur free in Γ :
DVΓ (A) = FV(A)\FV(Γ ).

The expressions IT≺
t (G) and IH≺

t (G) stand for the induction thesis and in-
duction hypothesis, respectively. They are defined as follows. For a given formula
G of the form ∀x1 (H1 ⊃ ∀x2 (H2 ⊃ . . . ∀xn (Hn ⊃ F ) . . . )), an arbitrary term
t, and a binary relation symbol ≺:

IH≺
t (G) = ∀x′

1 (H1σ ⊃ ∀x′
2 (H2σ ⊃ . . . ∀x′

n (Hnσ ⊃ (tσ ≺ t ⊃ Fσ)) . . . ))
IT≺

t (G) = ∀x1 (H1 ⊃ ∀x2 (H2 ⊃ . . . ∀xn (Hn ⊃ (IH≺
t (G) ⊃ F )) . . . ))

where σ is the renaming substitution [x′
1/x1, x

′
2/x2, . . . , x

′
n/xn] and x′

1, x′
2, . . . ,

x′
n are some fresh variables.
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The induction thesis IT≺
t (G) is equivalent to the original thesis G on condition

that ≺ denotes a well-founded ordering. Note that the well-foundness of ≺ cannot
be finitely expressed in a first-order language and the calculus CTC takes it on
trust. In other words, correctness of a ForTheL text is verified assuming the
following axiom scheme of general induction: Ind = (IT≺

t (G) ⊃ G), where G
and t are placeholders for a formula and a term, respectively.

Note that IT≺
t (G) is equivalent to G if ≺ is the always false relation. Therefore

the extension of first-order logic with the symbol ≺ and the axiom scheme Ind
is conservative.

The first induction handling inference rule of CTC says that by proving the
induction thesis, we automatically prove the initial one. In counter-application,
it means that the verifier has the right to substitute the appropriate induction
thesis for the initial thesis, when verifying a proof by induction. The second
induction handling rule says additionally that the induction hypothesis need not
to be put explicitly in the proof, but can be silently inserted there by the verifier.
However, the induction hypothesis can not appear in the proof before all the free
variables in it are declared.

Case section handling is another rule where an implicit logical predecessor,
namely, the case hypothesis, is added by the verifier (in counter-application).
Note that the Θ operation is not applied to a case hypothesis in the conclusion
of the rule. That means that the word thesis can not appear in a ForTheL case
hypothesis sentence, or it will not be verified.

Thesis handling. In the rules of CTC for assumptions, selections, and affirma-
tions, we see �-premises that relate a current thesis G to a new thesis G′ (by
“new”, we mean that G′ is used as the thesis for subsequent ForTheL proof
sequence). Such a transformation of thesis reflects our perception of a proof
development when a complex formula is being demonstrated.

For instance, whenever we want to prove a conjunction F ∧ G and succeed to
derive one part of it, say F , and write down the affirmation of F in the text,
then the thesis can be reduced just to G. Furthermore, if we prove a universal
statement about sets ∀x (x is a set ⊃ F ) then we can begin by an assumption
declaring x a set, thus reducing the thesis to F .

When we see such a connection between the current thesis and a sentence
under consideration, we call that sentence motivated. Motivated affirmations,
selections, assumptions allow to reduce the thesis to a new formula which would
be probably simpler to prove. Sometimes, the connection is evident from the syn-
tax, e.g. when the thesis is an implication and the assumption is the antecedent
formula. Sometimes, the connection depends on several reasoning steps: for ex-
ample, if variables S, T have been declared as sets and the current thesis is
“S is a subset of T”, then the assumption “let x be an element of S” is
motivated and reduces the current thesis to “x is an element of T”.

There is nothing special in non-motivated affirmations or selections. Whenever
we meet such a sentence, we simply do not change the thesis. On the contrary,
in a well-written mathematical proof, assumptions should be always motivated,
i.e. “suggested” by a current thesis. A non-motivated assumption is an unjustified
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narrowing of the search space. Also, it may happen that our reasoning capabilities
are too weak to discover the justification.

Now, how can we infer Γ �G (assume F ), Δ, if F is in no visible relation with
G? Though the calculus CTC admits various solutions, in our implementation,
the choice of the new thesis is guided by the form of Δ. Whenever the formula
images of sentences in Δ contain occurrences of thesis (e.g. when there are case
sections), we suppose that the proof of G continues under the non-motivated
assumption and leave the thesis unchanged:

x = DVΓ (F ) Γ � ∀x (F ⊃ G) ⊃ G Γ, (assume F ) �G Δ

Γ �G (assume ΘG(F )), Δ

The premise Γ � ∀x (F ⊃ G) ⊃ G is nontrivial: its is equivalent to the disjunc-
tion G ∨ (∃x F ). Recall that the free variables of G are all declared in Γ and
thus cannot be among x.

If thesis does not occur in the formula images in Δ, we suppose that the
rest of the proof is a sort of independent argument which should be considered
by itself. Therefore we take for the new thesis the image of the whole rest of the
proof sequence. The inference is as follows:

x = DVΓ (F ) Γ � ∀x (F ⊃ |Δ|) ⊃ G Γ, (assume F ) �|Δ| Δ

Γ �G (assume ΘG(F )), Δ

Note that the new variables in Δ, not known from Γ or F , are all bound in |Δ|.
Each assumption in Δ is an antecedent in the new thesis |Δ| and therefore

will be considered as motivated. Each affirmation or selection in Δ will reduce
the thesis, too, so that at the end of Δ the thesis will be simply �. The premise
Γ � ∀x (F ⊃ |Δ|) ⊃ G finishes the demonstration by deducing G from the
formula image of the proof sequence (assume F ), Δ.

Altogether, the following theorem can be seen as the statement of soundness
of CTC:

Theorem 1. Let Γ and Δ be arbitrary sequences of ForTheL sections and G,
an arbitrary formula. If Γ �G Δ can be inferred in CTC then Ind, Γ � G.

Proof. The claim can be proved by induction on the number of steps in the
inference of Γ �G Δ. Let us consider the last inference step. If it is made by
a rule with �� in conclusion, then G is �, and the claim is trivial. Otherwise,
we have seven cases to consider. We will denote the cases by the form of the
conclusion of the corresponding inference rule.

Case Γ �G. The premise of this rule is Γ � G, hence the claim.
Case Γ �G (assume ΘG(F )), Δ. By the premises of the rule, we have Γ �

∀x (F ⊃ G′) ⊃ G and Γ, (assumeF )�G′ Δ, where x=DVΓ (F ) = FV(F )\FV(Γ ).
By the induction hypothesis, the latter implies Ind, Γ, F � G′. Also, FV(G) ⊆
FV(Γ ) and FV(G′) ⊆ FV(Γ ) ∪ FV(F ). Therefore, FV(F ⊃ G′)\FV(Γ ) = x.
Hence Ind, Γ � ∀x (F ⊃ G′) and we have the claim.

Case Γ �G (affirm ΘG(F ) [Λ]), Δ. This is subsumed by the next case.
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Case Γ �G (selectΘG(F )[Λ]), Δ. We have Γ �∃x F Λ and Γ � ∃x (F ∧G′) ⊃ G,
and Γ, (select F [Λ]) �G′ Δ, where x = FV(F )\FV(Γ ). By the induction
hypothesis, we have Ind, Γ � ∃x F and Ind, Γ, F � G′. Also, FV(G) ⊆ FV(Γ )
and FV(G′) ⊆ FV(Γ ) ∪ FV(F ). Hence FV(F ∧ G′)\FV(Γ ) = x and Ind, Γ �
∀x (F ⊃ G′). This implies Ind, Γ � ∃x (F ∧ G′) and we have the claim.

Case Γ �G (case (F ⊃ thesis) [Λ]), Δ. From the premises, we obtain
Γ, (assume F ) �G Λ and Γ, (case (F ⊃ G) [Λ]) �G∨F Δ. Also, DVΓ (F ) = ∅

which means that FV(F ), FV(G) ⊆ FV(Γ ). By the induction hypothesis, we
have Ind, Γ, F � G and Ind, Γ, (F ⊃ G) � (G ∨ F ). The former gives Ind, Γ �
(F ⊃ G). The latter gives Ind, Γ, (F ⊃ G) � G and we have the claim.

Cases Γ �G Δ and Γ �G Δ, Λ (induction handling rules). By the premise of
the rule and the induction hypothesis, we have Ind, Γ � IT≺

t (G). By definition
of Ind, we have the claim. �

4 Verification Example

Let us consider an example of a well-formed ForTheL text which, while being
simple, contains proofs by case analysis and by induction (the symbol -<- below
denotes a well-founded binary relation).

[number/numbers] # let the parser know it is the same word

Signature Nat. # 0
A natural number is a notion. # 0.0

Signature Zer. # 1
0 is a natural number. # 1.0

Signature Suc. # 2
Let i be a natural number. # 2.0
succ i is a natural number. # 2.1

Signature Add. # 3
Let i,j be natural numbers. # 3.0
i + j is a natural number. # 3.1

Signature Ord. # 4
Let i,j be natural numbers. # 4.0
i -<- j is an atom. # 4.1

Axiom ZerSuc. # 5
For any natural number i if i != 0 then # 5.0
there exists a natural number j such that succ j = i.

Axiom AddZer. # 6
For any natural number i (i + 0 = i). # 6.0

Axiom AddSuc. # 7
For all natural numbers i,j (i + succ j = succ (i+j)). # 7.0

Axiom OrdSuc. # 8
For any natural number i (i -<- succ i). # 8.0

Lemma ZerAdd. # 9
For any natural number i (0 + i = i). # 9.0



On Correctness of Mathematical Texts 593

Proof by induction.
Let i be a natural number. # 9.0.0
Case i = 0. # 9.0.1
obvious.
Case i != 0. # 9.0.2
Take a natural number j such that succ j = i. # 9.0.2.0
We have j -<- i. # 9.0.2.1
Hence 0 + j = j. # 9.0.2.2
Then we have the thesis. # 9.0.2.3

end.
qed.

Note the numerical indexes in the comments. Each index denotes a position
of a particular ForTheL section in the text. For example, 9.0 is the position of
the main affirmation in the lemma ZerAdd, 9.0.0 is the position of the starting
assumption in the proof, 9.0.1 and 9.0.2 point at the case sections.

Let us reconsider this text with the formula images in place of ForTheL sen-
tences. In what follows, t ε NatNum stands for “t is a natural number”.

toplevel Nat
posit ∀x (x ε NatNum ⊃ �)

toplevel Zer
posit ∀x (x ≈ 0 ⊃ x εNatNum)

toplevel Suc
assume i ε NatNum
posit ∀x (x ≈ succ i ⊃ x εNatNum)

toplevel Add
assume i ε NatNum ∧ j εNatNum
posit ∀x (x ≈ i + j ⊃ x ε NatNum)

toplevel Ord
assume i ε NatNum ∧ j εNatNum
posit i ≺ j ⊃ �

toplevel ZerSuc
posit ∀i (i εNatNum ⊃ i 
= 0 ⊃ ∃j (j εNatNum ∧ succ j ≈ i))

toplevel AddZer
posit ∀i (i εNatNum ⊃ i + 0 ≈ i)

toplevel AddSuc
posit ∀i (i εNatNum ⊃ ∀j (j ε NatNum ⊃ i + (succ j) ≈ succ (i + j)))

toplevel OrdSuc
posit ∀i (i εNatNum ⊃ i ≺ succ i)

toplevel ZerAdd
affirm ∀i (i εNatNum ⊃ 0 + i ≈ i)

assume i ε NatNum
case i = 0 ⊃ thesis
case i 
= 0 ⊃ thesis

select j εNatNum ∧ (succ j) ≈ i
affirm j ≺ i
affirm 0 + j ≈ j
affirm thesis



594 K. Verchinine et al.

We are going to study the inference steps which prove correctness of the
main lemma (the top level of the text is pretty trivial). In order to fit into
the page width we will write position indexes in parentheses in place of the
corresponding sections. We proceed in a bottom-top manner, moving from the
desired conclusion to axioms.

Γ �� (9.0)
Γ �|(9.0)| (9.0.0), (9.0.1), (9.0.2)

Γ �G (9.0.0), A, (9.0.1), (9.0.2)

Γ � (|(9.0)| ∧ �) ⊃ � Γ, (9.0) ��
Γ, (9.0) � �

where

Γ = (0), . . . , (8)
A = (assume H)

|(9.0)| = ∀i (i εNatNum ⊃ 0 + i ≈ i)
G = IT≺

i (|(9.0)|) = ∀i (i εNatNum ⊃ (H ⊃ 0 + i ≈ i))
H = IH≺

i (|(9.0)|) = ∀i′ (i′ εNatNum ⊃ (i′ ≺ i ⊃ 0 + i′ ≈ i′))

Note the fragment of inference where we apply the induction rule. Instead of
proving the statement of the affirmation (9.0) as is, we descend into the proof
with a weakened current thesis G having the additional induction hypothesis H .

We begin by inserting that induction hypothesis H into the proof. Note that
the variable i which is free in H is declared in (9.0.0) and therefore known at
the position of added hypothesis. Also note how the two assumptions reduce the
current thesis from G to G′ and then to G′′.

Γ �G (9.0.0), A, (9.0.1), (9.0.2)
Γ � ∀i (i εNatNum ⊃ G′) ⊃ G Γ, (9.0.0) �G′ A, (9.0.1), (9.0.2)

Γ, (9.0.0) �G′ A, (9.0.1), (9.0.2)
Γ, (9.0.0) � (H ⊃ G′′) ⊃ G′ Γ, (9.0.0), A �G′′ (9.0.1), (9.0.2)

where

G′ = (H ⊃ 0 + i ≈ i) G′′ = (0 + i ≈ i)

The first case section is very short. Note that thesis in the formula image of
(9.0.1) is replaced with the actual thesis in (9.0.1)′:

Γ, (9.0.0), A �G′′ (9.0.1), (9.0.2)
Γ, (9.0.0), A, C1 �G′′

Γ, (9.0.0), A, C1 � G′′

Γ, i εNatNum, i ≈ 0 � 0 + i ≈ i

Γ, (9.0.0), A, (9.0.1)′ �G′′′ (9.0.2)

where

C1 = (assume i ≈ 0) (9.0.1)′ = (case (i ≈ 0 ⊃ G′′)) G′′′ = G′′ ∨ i ≈ 0
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The second case section is longer but no more complex:

Δ0 �G′′′ (τ)
Δ0, C2 �G′′′ (τ.0), (τ.1), (τ.2), (τ.3) Δ0, (τ)′ �G′′′∨i	≈0

Δ0, (τ)′ � G′′′ ∨ i �≈ 0
� G′′ ∨ i ≈ 0 ∨ i �≈ 0

Δ1 �G′′′ (τ.0), (τ.1), (τ.2), (τ.3)
Δ1 �∃jF1

Δ1 � ∃jF1

Δ1 � ∃j (F1 ∧ G′′′) ⊃ G′′′ Δ1, (τ.0) �G′′′ (τ.1), (τ.2), (τ.3)

Δ2 �G′′′ (τ.1), (τ.2), (τ.3)
Δ2 �j≺i

Δ2 � j ≺ i

Δ2 � (j ≺ i ∧ G′′′) ⊃ G′′′ Δ2, (τ.1) �G′′′ (τ.2), (τ.3)

Δ3 �G′′′ (τ.2), (τ.3)
Δ3 �0+j≈j

Δ3 � 0 + j ≈ j

Δ3 � (0 + j ≈ j ∧ G′′′) ⊃ G′′′ Δ3, (τ.2) �G′′′ (τ.3)

Δ4 �G′′′ (τ.3)
Δ4 �G′′′

Δ4 � G′′′

Δ4 � 0 + i ≈ i

Δ4 � (G′′′ ∧ �) ⊃ G′′′ Δ4, (affirm G′′′ [ ]) ��
Δ4, (affirm G′′′ [ ]) � �

where

τ = 9.0.2 Δ0 = Γ, (9.0.0), A, (9.0.1)′

C2 = (assume (i �≈ 0)) Δ1 = Δ0, C2

Λ = (τ.0), (τ.1), (τ.2), (τ.3) Δ2 = Δ1, (τ.0)
(τ)′ = (case (i �≈ 0 ⊃ G′′′) [Λ]) Δ3 = Δ2, (τ.1)
F1 = j εNatNum ∧ succ j ≈ i Δ4 = Δ3, (τ.2)

A few comments should be made here. First, note the right-hand branch in the
first inference fragment, where the goal G′′∨i ≈ 0∨i �≈ 0 is proved. According to
the rules of our calculus, each additional case section weakens the current thesis
by putting it into a disjunction with the case’s hypothesis. At the end of case
analysis we have to prove the formula G∨H1 ∨ · · · ∨Hn, where G is the original
thesis and H1, . . . , Hn are explored cases. Yet, it is a good style to make case
analyses exhaustive so that just the disjunction H1 ∨ · · · ∨Hn would hold at the
end.

Second, a selection sentence is valid whenever we can prove the existence
of named objects, i.e. the non-emptiness of the classes corresponding to the
listed notions. While in the ForTheL text in question the selection (9.0.2.0) does
not change the current thesis, that may happen when the current thesis is a
statement of existence.
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Third, pay attention that the affirmation (9.0.2.2) is a direct consequence of
the induction hypothesis H and the previous affirmation (9.0.2.1). If the assump-
tion A (whose formula image is H) were not inserted in the proof, the affirmation
(9.0.2.2) could not be proved. However, one can write a proof where no sentence
requires the induction hypothesis in order to be verified. For example, the whole
proof of the affirmation (9.0) could be simply omitted. Then the system would
try to prove just the induction thesis G, which is not difficult and does not
require any induction reasoning capabilities.

Fourth, let us consider the last inference fragment. The formula image of the
affirmation (9.0.2.3) is just the atomic formula thesis, which stands for the
current thesis, G′′′. Once having this affirmation proved, we have no pending
obligations so that the new thesis is simply �. Recall that G′′′ is the formula
0 + i ≈ i ∨ i ≈ 0, that is, we must either prove the initial thesis (G′′) or reduce
the task to the previous case.

Now, assuming the validity of all the first-order leaves (�-sequents) in our
derivation, we have demonstrated the logical correctness of the ForTheL text
under consideration.

5 Experiments

In the course of development of the SAD system, we have conducted a number
of essays on formalization and verification of non-trivial mathematical results:

– Ramsey’s Finite and Infinite theorems.
– Cauchy-Bouniakowsky-Schwarz inequality.
– Newman’s lemma about term-rewriting systems [21].
– The square root of a prime number is irrational: 30 statements in prelimi-

naries (integer numbers), 5 definitions, 7 lemmas, about 50 sentences in the
proof of the main lemma (any prime dividing a product divides one of the
factors), 10 sentences in the proof of the theorem (see [4] for details).

– Chinese remainder theorem and Bezout’s identity in terms of abstract rings:
25 statements in preliminaries (ring axioms, operations on sets), 7 definitions
(ideal, principal ideal, greatest common divisor, etc), 3 lemmas, 8 sentences
in the proof of CRT, about 30 sentences in the proof of Bezout’s identity.

– Tarski’s fixed point theorem (cited above): 11 statements in preliminaries
(ordered sets), 7 definitions (upper and lower bounds, supremum, infimum,
complete lattice, isotone function, fixed point), 2 lemmas, 18 sentences in
the proof of the theorem.

The texts listed above were written in ForTheL and automatically verified
in SAD (using different background provers). This work have taught us many
important lessons. To mention some:

– Formalization style is critical: the choice of symbols to introduce in defini-
tions, the choice of preliminary facts, and even the way a proof is structured
may decide whether the text will be verified or not.
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– It is very desirable to comprehend the proofs before writing them in ForTheL.
The SAD system may succeed to fulfil the gaps in a well thought-out rea-
soning, but it will not invent one for you.

– In most cases, the background prover finds the proof in three seconds — or
does not find it at all.

6 Conclusion

While working on the development of the SAD project, we always felt that we
strongly need an abstract, clear and transparent sight on the whole “formaliza-
tion-and-verification” process. The calculus CTC proposed here is the first step
in this direction. The next one will be a formal description of definition expansion
and other reasoner’s routines which is obviously missing now. Moreover, such a
description must provide users with a kind of specific language to create their own
reasoning strategies. Further on, something like a guide to problem formalization
in a strong mathematical manner would be extremely useful, too.

Our abstract considerations of text verification resulted in the SAD system.
Certainly, we could not give here a detailed description of all nice features of
SAD. SAD is a powerful system and its power lies in its reasoning facility. Ex-
periments show that, for example, the specific strategy of definition processing
contributes a lot to the success of the whole verification process. If we use defi-
nitions straightforwardly — convert them into formula images and add the cor-
responding premises to the sequent that goes into a prover — we cannot verify
the proof of Tarski fixed point theorem as it is formulated above, even when a
winner of CASC competitions is chosen as the background prover.

SAD is not a perfect system (if any!). One can easily see how it may be
improved and developed. Our research and implementation plans with respect
to SAD are: extend ForTheL and SAD with some means to talk and reason
about second-order objects (functions, vectors, sequences) and operations on
them; develop and implement a mathematical library of SAD to accumulate
verified portions of mathematical knowledge and to support further (deeper)
advances in formalization.
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