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Abstract It is well known that the connection refinement of clause tableaux with
paramodulation is incomplete (even with weak connections). In this paper, we
present a new connection tableau calculus for logic with equality. This calculus is
based on a lazy form of paramodulation where parts of the unification step become
auxiliary subgoals in a tableau and may be subjected to subsequent paramodulations.
Our calculus uses ordering constraints and a certain form of the basicness restriction.

Keywords Connection tableaux · Lazy paramodulation ·
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1 Introduction

The model elimination proof procedure was originally introduced by Loveland as
a resolution-based calculus with clauses of a special form [10]. Later it was recon-
sidered as a clause tableau calculus, where proof search is guided by connections
between clauses [8]. In this form, the method is also referred to as connection
tableaux.

Connection tableaux are a powerful goal-directed refinement of general clause
tableaux. Further, strong search pruning methods and efficient implementation
techniques were developed for this calculus [9].

It is tempting to adapt connection tableaux for logic with equality by introducing
paramodulation. That is, we could make a pair (equality to paramodulate by, literal
to paramodulate in) constitute a connection, too, and add rules for paramodulation
in a branch. Unfortunately, such a calculus turns out to be incomplete. Consider the
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clause set {a ≈ b , c ≈ d, ¬P( f (a), f (b)), ¬Q(g(c), g(d)), P(x, x) ∨ Q(y, y)}. Let us
try to build a refutation of S in that hypothetical calculus.

a ≈ b
¬P( f (a), f (b))

¬P( f (b), f (b))

P(x, x)

⊥ · (x = f (b))

Q(y, y)

?

¬Q(g(c), g(d))

c ≈ d
¬Q(g(d), g(d))

P(x, x)

?
Q(y, y)

⊥ · (y = g(d))

We cannot continue the first inference because the literal Q(y, y) does not match
Q(g(c), g(d)) and the equality c ≈ d cannot be applied to Q(y, y), either. The second
inference will fail in a similar way.

The fact that paramodulation works fine in resolution-style calculi [16] and general
clause tableaux [4, 7] is due to a flexible order of inferences that is impossible
in a goal-directed calculus. The calculus could be made complete if we allow
paramodulation into variables and add the axioms of functional reflexivity ( f (x) ≈
f (x), g(x) ≈ g(x), etc.) in order to construct new terms [11]. This approach is quite
inefficient in practice, however, since functional reflexivity allows us to substitute an
arbitrary term for any variable.

To handle problems with equality, competitive connection tableau provers [13]
employ various forms of Brand’s modification method [2, 3, 15]. This method
transforms a clause set with equality into an equiconsistent set where the equality
predicate does not occur. In addition, a complete procedure was developed based
on a combination of goal-directed proof search in tableaux and a bottom-up equality
saturation using basic ordered paramodulation [14].

In this paper we propose an alternative approach for equality handling in con-
nection tableaux that is based on lazy paramodulation. This technique was originally
introduced by J. Gallier and W. Snyder as a method for general E-unification [6]
and used later to overcome incompleteness of the set-of-support strategy (another
example of a goal-directed method) in the classical paramodulation calculus [18].

So, what is lazy paramodulation? Above, we noted that the literal Q(y, y) cannot
be unified with Q(g(c), g(d)). But let us postpone unification until the equality c ≈ d
is applied to the second literal. Let us make the equality Q(y, y) = Q(g(c), g(d)) not
a constraint to solve but an additional subgoal to prove. The clause set from the
previous counterexample can be easily refuted in such a calculus.

P(x, x)

¬P( f (a), f (b))

f (a) �≈ x
a ≈ b

f (b) �≈ x
⊥ · ( f (b) = x)

a �≈ a
⊥

f (b) �≈ x
⊥ · ( f (b) = x)

Q(y, y)

¬Q(g(c), g(d))

g(c) �≈ y
c ≈ d

g(d) �≈ y
⊥ · (g(d) = y)

c �≈ c
⊥

g(d) �≈ y
⊥ · (g(d) = y)

Although the approach seems to work, an unrestricted procedure will be no better
than the use of functional reflexivity. Indeed, if we postpone any unification, we can
apply any equality to any nonvariable term. Can we refine the method? Would it be
complete? In what follows, we give positive answers to these questions.
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This paper is a refined version of the work in Ref. [17]. The introduced calculi have
been given a simpler formulation, and some shortcomings in explanation and proofs
have been eliminated. The text is organized as follows. The next section contains
preliminary material. In Section 3 we explain the method of constrained equality
elimination [2] in a form adapted for the completeness proof in the next section. A
refined version of connection tableaux with lazy paramodulation is introduced and
its completeness proved in Section 4. We conclude with a brief summary and plans
for future work.

2 Preliminaries

We work in first-order logic with equality in clausal form. A clause is a disjunction of
literals; a literal is either an atomic formula or the negation of an atomic formula. We
consider clauses as unordered multisets.

The equality predicate is denoted by the symbol ≈. We abbreviate the negation
¬(s ≈ t) as s �≈ t. Negated equalities will be called disequalities to be distinguished
from inequalities used in constraints (see below). We consider equalities as un-
ordered pairs of terms; that is, a ≈ b and b ≈ a stand for the same formula.

The symbol � will denote “pseudoequality,” a binary predicate without any
specific semantics. We use it to replace the symbol ≈ when we pass to logic without
equality. The order of arguments becomes significant here: a � b and b � a denote
different formulas. The expression s �� t stands for ¬(s � t).

We denote nonvariable terms by the letters p and q and arbitrary terms by l, r,
s, and t. Variables are denoted by u, v, w, x, y, and z. Letters with arrows (�s, �x,
etc.) stand for sequences of terms or variables. Substitutions are denoted by σ and τ .
The result of applying a substitution σ to an expression (term, term sequence, literal,
or clause) E is denoted by Eσ . We write E[s] to indicate that s occurs in E (including
nonproper occurrence, when E is s), and we write E[t] to denote the expression
obtained from E by replacing one occurrence of s by t.

We use constraints as defined in [2]. A constraint is a, possibly empty, conjunction
of atomic constraints s = t or s � t or s 	 t. The letters γ and δ are used to denote
constraints; the symbol 
 denotes the empty conjunction. A compound constraint
(a = b ∧ b � c) can be written in an abbreviated form (a = b � c). An equality
constraint (�s = �t) stands for (s1 = t1 ∧ · · · ∧ sn = tn).

A substitution σ solves an atomic constraint s = t if the terms sσ and tσ are
syntactically identical. It is a solution of an atomic constraint s � t (s 	 t) if sσ > tσ
(sσ � tσ , respectively) with respect to some reduction ordering > that is total on
ground terms. We say that σ is a solution of a general constraint γ if it solves all
atomic constraints in γ ; γ is called satisfiable whenever it has a solution.

A constrained clause tableau is a finite tree T. The root node of T contains the
initial set of clauses to be refuted. The nonroot nodes are pairs L · γ where L is a
literal and γ is a constraint. When we say that a variable (term, literal) occurs in a
tableau, we usually mean occurrence in a nonroot node.

Any branch that contains the literal ⊥ (denoting the propositional falsum) is
closed. A tableau is closed, whenever every branch in it is closed and the overall
set of constraints in it is satisfiable. A closed tableau is said to refute the clause set in
its root node.



182 A. Paskevich

An inference starts from the single root node. Each inference step grows some
branch in the tableau by adding new leaves under the leaf of the branch in question.
Symbolically, we describe an inference rule as follows:

S ‖ �

L1 · γ1 · · · Ln · γn
,

where S is the initial set of clauses (the root node), � is the branch being augmented
(with constraints not mentioned), and (L1 · γ1), . . . , (Ln · γn) are the added nodes
(empty constraints will be omitted). Whenever we choose some clause C in S to
participate in the inference, we implicitly rename all the variables in C to some fresh
variables.

To illustrate the proposed notation, we present the classical connection tableau
calculus (denoted by CT) in Fig. 1.

Any tree built by the rules of a tableau calculus can be considered as a tree of
inference steps: each nonleaf node in the tableau is mapped to an inference step
that grows the branch under that node. We say that an inference step I′ follows an
inference step I in a given tableau whenever I′ is the next step to I in some branch of
the corresponding inference tree. For example, an inference tree in CT always starts
with an expansion step; also, that first expansion step can be followed only by another
expansion, since a connection step requires at least two literals in a branch.

Let T be a closed tableau built in CT or any other connection tableau calculus
introduced in this paper. We say that T is strongly connected whenever every strong
connection step in T follows an expansion step and every expansion step in T except
for the first one is followed by exactly one strong connection step. Since the letter
� in the rules of weak connection may stand for the empty sequence, the second
condition does not forbid two or more literals in the added clause to connect with
the parent node. The proviso “exactly” becomes significant as soon as we introduce
strong connection rules that are not particular cases of the weak connection rules.
The first condition becomes significant as soon as there are connection rules that do
not close the branch.

In what follows, we call refutations only those closed tableaux that are strongly
connected, if not explicitly stated otherwise.

Given an expansion step in a refutation tableau, the added clause will be called the
expansion clause of that step. In an expansion clause, the literal that is connected at

Fig. 1 Connection
tableaux CT
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the following strong connection step (as required by the definition of connectedness)
will be called the active literal of that expansion clause or, equivalently, of that strong
connection step. In the premise of a strong connection rule, the active literal is at the
end of the branch.

The CT calculus is sound and complete in first-order logic without equality [9].

Theorem 1 An equality-free set of clauses S is unsatisfiable if and only if there exists
a refutation of S in CT. Moreover, if S is unsatisfiable but any proper subset of S
is consistent, then for any C ∈ S , there is a CT-refutation of S that starts with (an
expansion by) C.

3 Constrained Equality Elimination

Constrained equality elimination (CEE) was proposed by Bachmair et al. in [2].
This is a variation of Brand’s modification method improved by the use of ordering
constraints.

Here, we describe CEE-transformation in a slightly modified form as compared
with the original explanation in [2]. First, we allow nonequality predicate sym-
bols. Second, we apply the rules of symmetry elimination before elimination of
monotonicity and transitivity. Third, we require any two different occurrences of
a nonvariable term to be abstracted separately, introducing two fresh variables.
Fourth, we work with traditional clauses and incorporate the ordering constraints
into inference rules. Fifth, we do not remove variable disequalities x �≈ y from the
clauses but instead “neutralize” them with an appropriate equality constraint.

These modifications are introduced to facilitate our subsequent arguments (es-
sentially, the undoing of the transformation) and do not affect the principal result
(Theorem 2).

We split the clause transformation rules of CEE into two groups as shown in Fig. 2.
Variables with a caret, called abstraction variables, are considered to be fresh in the
corresponding clause. Recall that the letters p and q stand for nonvariable terms,
whereas l, r, s, and t denote arbitrary terms.

We say that a clause is in normal form with respect to a group of CEE-rules if
no rule in that group can be applied to the clause. Note that for each group, normal
forms are unique up to renaming of abstraction variables.

Given a set of clauses S , we denote by Sym(S) the set of all normal forms of
clauses in S with respect to symmetry elimination. These rules replace the equality
symbol ≈ with the nonlogical predicate symbol � and let us forgo using explicit
axioms of symmetry for �.

We denote by SMT(S) the set of all normal forms of clauses in Sym(S) with
respect to elimination of monotonicity and transitivity. These rules flatten the terms
and split equality literals, thereby making redundant explicit axioms of monotonicity
and transitivity for �.

The set CEE(S) is then defined as the union SMT(S) ∪ {x � x}. In CEE(S), reso-
lutions correspond to paramodulations in the initial set. The introduced abstraction
variables are, in some sense, “values” of the terms on the left-hand side of new
disequalities. By “value” we mean the result of all paramodulations into and under
the term.
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Fig. 2 Constrained equality
elimination

Next we assign an atomic constraint p 	 s to each negative literal of the form
p �� s that occurs in CEE(S). We assign a constraint x = y to each negative literal
x �� y in CEE(S). We assign a constraint s � t to each positive literal s � t in CEE(S),
except for the reflexivity axiom z � z, which does not acquire any constraint. A
constrained ground instance of a clause C from CEE(S) is any ground clause Cσ

such that the substitution σ is a solution of all atomic ordering constraints assigned
for equalities and disequalities in C.

The following proposition is a counterpart of Theorem 4.1 from [2].

Theorem 2 A clause set S is satisfiable if and only if the set of all constrained ground
instances of clauses from CEE(S) is satisfiable.

Consider the calculus CT� in Fig. 3. In essence, it is just an extension of CT with
ordering constraints for equality literals.

Theorem 3 A clause set S is unsatisfiable if and only if the set SMT(S) can be refuted
in the CT� calculus.

Proof First, we show the soundness of CT� on CEE-transformed clause sets. Con-
sider a CT�-refutation T of the set SMT(S) and a substitution σ that solves the
overall set of constraints in T.

Let us transform T into a CT-refutation of CEE(S). To this purpose, we erase
the ordering constraints from T, so that equality connection steps of CT� become
connection steps of CT. Then we replace the set SMT(S) in the root node with
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Fig. 3 Connection tableaux
for CEE-clauses (CT�)

CEE(S) (that is, we add the reflexivity axiom) and rewrite every reduction step as
an expansion followed by a strong connection step.

SMT(S) ‖ �, s �� t
⊥ · (s = t)

=⇒ CEE(S) ‖ �, s �� t
z � z

⊥ · (z = s ∧ z = t)

On each such transformation, we add the substitution [sσ/z] to σ .
In the resulting CT-tree T

′, each expansion except for the first one is followed by a
strong connection step. Furthermore, the resulting substitution σ ′ solves the overall
set of constraints in T

′. Therefore, we have a CT-refutation of CEE(S). Let us extend
σ ′ to a ground substitution and apply it to T

′. The resulting tree is a CT-refutation of
a certain set S of ground instances of clauses from CEE(S). By the soundness of CT,
the set S is unsatisfiable.

The clauses in S are valid constrained ground instances of clauses from CEE(S).
Indeed, T is a strongly connected tableau. Therefore, every literal in T is either
reduced or connected with some complement literal in its branch. Each positive
equality literal (l � r) acquires the strict inequality constraint (l � r) by an equality
connection step. Each disequality (s �� t) in T is either reduced or connected with a
positive equality literal. In both cases, the constraint (s 	 t) will be satisfied by σ . A
disequality (x �� y) has to be reduced by reflexivity, so that the constraint (x = y) is
satisfied by σ , too. Thus, by Theorem 2, the set S is unsatisfiable.

Now, let us prove the completeness of CT� on CEE-transformed clause sets. Let
S be an unsatisfiable clause set and S be the set of all constrained ground instances of
clauses from CEE(S). By Theorem 2, S is also unsatisfiable. By Theorem 1, we can
build a CT-refutation T of S that does not start with an instance of the reflexivity
axiom. Since we do not connect subterms in the CT calculus, we can lift T to a



186 A. Paskevich

refutation T
′ of CEE(S) by changing the root node, replacing the constrained ground

clause instances with the original clauses from S , and lifting the constraints. Let
σ be the substitution that instantiates T

′ to T (thereby satisfying the overall set of
constraints in T

′).
In the tree T

′, any variable disequality (x �� y) can be expanded (and then strongly
connected) only with the reflexivity axiom. Indeed, xσ = yσ by the definition of a
constrained ground instance, and a positive equality literal of the form (s � s) may
occur in S only as an instance of the reflexivity axiom (otherwise, it would dissatisfy
some strict inequality constraint). Also, there are no disequalities of the form (x �� q)

in T
′, by the definition of Sym(S).

Therefore we transform T
′ into a CT�-refutation of SMT(S). First, we remove the

reflexivity axiom (z � z) from the root node of T
′ and convert every expansion with

this clause to a CT�-reduction (recall that every such expansion in the refutation
tableau T

′ is necessarily followed by a strong connection step).

CEE(S) ‖ �, s �� t
z � z

⊥ · (z = s ∧ z = t)

=⇒ SMT(S) ‖ �, s �� t
⊥ · (s = t)

Second, we convert the connection steps.

CEE(S) ‖ �, p �� t, l � r
⊥ · (l = p ∧ r = t)

=⇒ SMT(S) ‖ �, p �� t, l � r
⊥ · (p = l � r = t)

CEE(S) ‖ �, l � r, p �� t
⊥ · (p = l ∧ t = r)

=⇒ SMT(S) ‖ �, l � r, p �� t
⊥ · (p = l � r = t)

CEE(S) ‖ �, p �� t,�, l � r
⊥ · (l = p ∧ r = t)

=⇒ SMT(S) ‖ �, p �� t,�, l � r
⊥ · (p = l � r = t)

CEE(S) ‖ �, l � r, �, p �� t
⊥ · (p = l ∧ r = t)

=⇒ SMT(S) ‖ �, l � r, �, p �� t
⊥ · (p = l � t = r)

One can easily see that the substitution σ satisfies the newly introduced ordering
constraints. Indeed, all the occurrences of the reflexivity axiom have been erased
from T

′, and every other positive equality literal is provided with the same strict
inequality constraint by the definition of a constrained ground instance. Thus, we
obtain a well-formed refutation of SMT(S) in CT�. ��

We denote by SMT(S) the closure of Sym(S) under monotonicity and transitivity
elimination. The following lemmata provide several simple properties of this set.

Lemma 1 For any clause set S , SMT(S) is a subset of SMT(S).

Lemma 2 Any clause in SMT(S) without occurrences of abstraction variables belongs
to Sym(S).
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Lemma 3 Any clause in SMT(S) with occurrences of abstraction variables is of the
form L[û] ∨ p �� û ∨ C, where (a) the abstraction variable û does not occur in p
and C, (b) û occurs exactly once in L[û], (c) L[û] is neither û � s nor û �� s, and
(d) the clause L[p] ∨ C belongs to SMT(S).

Proof Every step of monotonicity and transitivity elimination adds an abstraction
variable to a clause in such a way that the listed properties are satisfied. Note that the
variable û does not occur in the “unflattened” clause L[p] ∨ C. ��

4 Connection Tableaux with Lazy Paramodulation

In this section we present a refined version of the calculus sketched in the introduc-
tion. The inference rules of the LPCT calculus are given in Fig. 4. The variables with
a bar are considered to be fresh in the whole tableau.

The proposed calculus contains several improvements in comparison with what
was sketched at the beginning of the paper. First, we use lazy inference only in the
strong connection rules; weak connection does not postpone unification. Second, the
“laziness” itself is more restricted now: any two nonvariable terms whose unification
is postponed should have the same functional symbol at the top. Third, we use
ordering constraints. Fourth, we use basic paramodulation.

We note that there are two forms of the basicness restriction. The first one
forbids paramodulation into terms introduced by instantiation. The corresponding

Fig. 4 Connection tableaux
with lazy paramodulation
LPCT
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refinement of lazy paramodulation was described by Moser [12]. This restriction is
fully adopted in LPCT, since we work with constrained literals and do not apply
substitutions in the course of inference.

The second and stronger form additionally prevents paramodulation into terms
introduced by the earlier paramodulation steps [1]. In this form, basicness is used
in LPCT, too (note the variables with a bar), although not everywhere: when a
paramodulating equality is the active literal in a strong connection, the inserted term
is left “on the surface,” allowed for subsequent paramodulations.

Let us illustrate the rules of LPCT in the example discussed in the introduction.
To fit the tableau onto a page, we will “halve” the problem (the other part is treated
in the same way) and consider the clause set S = {a ≈ b , ¬P( f (a), f (b)), P(x, x)}
and the ordering f � a � b . The following tableau is a well-formed refutation of S .

S
P(x, x)

¬P( f (a), f (b))

⊥ · (v̄1 = x ∧ v̄2 = x) f (a) �≈ v̄1

a ≈ b
f (w̄) �≈ v̄1 · (a = a � w̄)

⊥ · ( f (w̄) = v̄1)

b �≈ w̄

⊥ · (b = w̄)

f (b) �≈ v̄2

⊥ · ( f (b) = v̄2)

The soundness of LPCT can be shown directly, by checking that inference rules
generate only what follows from the initial clause set and the current branch.

Theorem 4 For any unsatisfiable clause set S there exists a refutation of S in LPCT.

Proof We prove the completeness of the LPCT calculus by transforming a CT�-
refutation of the set of CEE-rewritten clauses into an LPCT-refutation of the initial
clause set. To this purpose, we introduce an intermediate calculus LPCT�, whose
inference rules are those of LPCT with the equality symbol ≈ replaced with �.

At the first stage we build a CT�-refutation of the set SMT(S). Such a refutation
exists by Theorem 3. Then we extend the root node of the tableau to SMT(S)

(by Lemma 1) and transform the tree into an LPCT�-refutation T of SMT(S). In
Fig. 5, we show how the connection rules of CT� can be simulated in LPCT� so that
generated constraints stay essentially the same.

At the second stage we unflatten the clauses. Let us denote the tableau T as T
(0).

We are going to construct a sequence of well-formed LPCT�-refutations of the set
SMT(S) such that for every i > 0, there are fewer different abstraction variables in
T

(i) than in T
(i−1). Once we obtain a refutation tableau where abstraction variables

do not occur, we can replace SMT(S) in the root node with Sym(S) (by Lemma 2)
and proceed to the third stage.

Consider some lowermost expansion clause from SMT(S)\Sym(S) in T
(i−1). By

“lowermost” we mean that there are no expansion clauses with abstraction variables
under this clause. According to Lemma 3, the clause is of the form L[û] ∨ p �� û ∨ C
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Fig. 5 Transforming CT� to LPCT�

such that û does not occur in p and C, û occurs exactly once in L[û], L[û] is not of
the form û � s, and the clause L[p] ∨ C belongs to SMT(S).

We are going to replace the literals L[û] and p �� û with L[p] and combine two
corresponding subtrees of T

(i−1) so that all the paramodulations in and under the
term p are made first and the connections to L follow them.

Let T
• be the subtree of T

(i−1) that grows from the literal p �� û. We can affirm
that û occurs in T

• only in disequalities of the form t �� û and in constraints (t = û)
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introduced by a reduction step; moreover, û does not occur in these terms t. Indeed,
all we can do in LPCT� with a literal t �� û is to paramodulate in t or reduce the
branch.

The choice of the second subtree, denoted T
◦, depends on whether L[û] is the

active literal in the expansion clause in question. If L[û] is not the active literal,
then T

◦ will be the subtree that grows from L[û]. Otherwise, consider seven possible
strong connection steps in Fig. 6. In each case, a strong connection rule generates
exactly one node where û occurs. Further, in that node, û occurs exactly once in the
literal and does not occur in the constraint (if any). Then we denote by T

◦ the subtree
growing from that node.

Let M[û] · γ be the root node of T
◦. For an arbitrary term t, we denote by T

◦[t]
the tree T

◦ where every occurrence of û (both in literals and constraints) is replaced
with t. For an arbitrary constraint δ, we denote by T

◦[t] · δ the tree T
◦[t] where the

root node constraint is replaced with δ.
We construct the combined tree [T•]T◦

from T
• as follows:

– Each nonreduced literal of the form t �� û is replaced with M[t];
– Each branch end of the form

t �� û · δ

⊥ · (t = û)
is replaced with T

◦[t] · δ.

Then we transform T
(i−1) as follows:

(a) The expansion clause L[û] ∨ p �� û ∨ C is replaced with L[p] ∨ C;
(b) The subtree T

• is removed from the tableau;
(c) The subtree T

◦ is replaced with [T•]T◦ · γ .

An example of this transformation is shown in Fig. 7. Note how occurrences of the
abstraction variable û in T

• change in [T•]T◦
.

Fig. 6 Abstraction variable
occurs in an active literal
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Fig. 7 Elimination of an abstraction variable

Let T
(i) be the resulting tableau. Let us demonstrate that this tree satisfies all the

necessary conditions:

1. T
(i) is a well-formed LPCT�-tableau. First of all, note that the root literal of

[T•]T◦
is M[p]. If L[û] was the active literal in the original expansion clause, then

M[p] · γ is exactly the node that is generated by a strong connection rule when
L[p] replaces L[û]. (If L[û] was not active, then M and L are the same literal).
Furthermore, the only possible connection with a literal of the form t �� û in T

• is
paramodulation in the term t. Then the same connection steps can be made with
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the corresponding literals M[t] in [T•]T◦
(also in case where p �� û is the active

literal in the original expansion clause).
Finally, each literal t �� û reduced in T

• appears as M[t] in [T•]T◦
and grows

further as the subtree T
◦[t]. One can easily see that this substitution does not

make T
◦[t] ill-formed. Indeed, the only inference rule in LPCT� that requires

a variable in a premise is the third rule of strong connection, where the active
literal is of the form z � r. However, an abstraction variable never occurs at the
left-hand side of an equality in a clause from SMT(S).

2. T
(i) is a closed tableau. Obviously, every branch in T

(i) is closed. Furthermore, for
each literal t �� û reduced in T

•, û and t are equal with respect to the constraints
in T

(i−1). Hence the constraints in the new subtree T
◦[t] can be solved with the

same substitution.
3. T

(i) is strongly connected. If L[û] is the active literal in the original expansion
clause, then L[p] becomes the active literal in the new tree. That is the reason
why we choose T

◦ growing from a child node and not from L[û] itself. Here
is also where laziness of strong connection steps is crucial for our proof. If the
abstraction variable could hide into a constraint, then the only way to eliminate
it would be replacing the subtree growing from L[û], thereby giving up the
connectedness of the tree.
If p �� û is the active literal in the original expansion clause, the subtree growing
from L[p] in T

(i) (namely, [T•]T◦
) follows the structure of T

•. Thus, L[p]
becomes (again) the active literal in the new tree.
If the strong connection has been made elsewhere in the original clause, it is
unaffected by our transformation.

4. T
(i) contains strictly less distinct abstraction variables than T

(i−1). The variable û is
eliminated from the expansion clause and cannot occur in any tree T

◦[t]. Every
occurrence of û in T

• is eliminated from [T•]T◦
by construction. Therefore, û

does not occur in T
(i).

Since no abstraction variable was introduced under the considered expansion
step in T

(i−1), new abstraction variables could not appear in T
(i) because of

multiple copies of T
◦ in [T•]T◦

.

By repeating this procedure, we will eventually get a refutation tableau T
(N) where

abstraction variables do not occur at all. Therefore, every expansion clause in T
(N)

belongs to the set Sym(S) by Lemma 2. So we replace SMT(S) with Sym(S) in the
root node of T

(N) and obtain an LPCT�-refutation of Sym(S).
At the third stage we undo the symmetry elimination step. We replace the symbol

� with ≈ and reorient equalities to their initial form in S . Thus we obtain an LPCT-
refutation of S . ��

Despite the way in which we prove completeness of the calculus, LPCT is not
just a reformulation of the CEE method. In fact, there is an essential difference
between flattening and lazy paramodulation. We said above that abstraction vari-
ables introduced by CEE can be considered as “values” of the terms they replace.
That is, the term that is finally substituted for a variable û in fact is the result of all
paramodulations made under and in the term t which was replaced with û by CEE.
Therefore, in a given CEE-clause, every term has exactly one “value.” It is not the
case for LPCT.
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Let S be { x ≈ c ∨ x ≈ g(h(x)), f (c) ≈ d, f (g(z)) ≈ d, f (a) �≈ d }. The following
tableau built in a simplified version of LPCT cannot be obtained from any CT�-
refutation of CEE(S).

S
f (a) �≈ d

x ≈ c
f (c) �≈ d
f (c) ≈ d

d �≈ d
⊥

f (c) �≈ f (c)
⊥

x �≈ a
⊥ · (x = a)

x ≈ g(h(x))

f (g(h(x))) �≈ d
f (g(z)) ≈ d

d �≈ d
⊥

f (g(z)) �≈ f (g(h(x)))

⊥ · (z = h(x))

x �≈ a
⊥ · (x = a)

Here, we replace the constant a in the starting clause with two terms, c and g(h(x)).
If we make inferences with CEE-clauses, we should take two different instances of
the starting clause. Based on this example, one can show that LPCT can give an
exponential shortening of the minimal inference size as compared with CT� (but at
the same time the number of possible inferences increases).

Another noteworthy point is the weakness of unification. The lazy unification
procedure used in LPCT, which matches top functional symbols immediately and
postpones the rest is the one proposed for lazy paramodulation in [6]. This form of
unification is much weaker than top unification (introduced in [5] and used in [18])
which descends down to variables. Top unification allows us to restrict dramatically
the weight of postponed “unification obligations.” In particular, top unifiability of
two ground terms is decided immediately.

Unfortunately, top unification and ordering constraints cannot be used to-
gether in the framework of connection tableaux. Consider the set S = { P(c) ∨
Q(c), ¬P(a), ¬Q(b), b ≈ c, a ≈ c } and the ordering a > b > c. Ordering con-
straints prohibit paramodulations into c. The only way to refute S in LPCT is to
connect P(c) with ¬P(a), or Q(c) with ¬Q(b). However, these pairs are not top
unifiable.

It is unclear whether ordered inferences for a stronger kind of lazy unification is a
good trade-off. We are not aware of any adaptation of connection tableaux for lazy
paramodulation with top unification. One of the directions for further research is to
develop and study one.

5 Conclusion

We have presented a new connection tableau calculus for first-order clausal logic
with equality. This calculus employs lazy paramodulation with ordering constraints
and a restricted form of basicness. The refutational completeness of the calculus is
demonstrated by transforming proofs given by the (almost) traditional connection
tableau calculus applied to a set of flattened clauses (in the spirit of Brand’s modifi-
cation method). Thus a connection is established between lazy paramodulation and
equality elimination via problem transformation.

We plan to investigate the compatibility of the proposed calculus with various
refinements of connection tableaux; first of all, with the regularity restriction.
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Unfortunately, the existing completeness proof is not well suited for this task; some
semantic argument would be useful here. Another interesting topic to study is more
restricted forms of laziness, probably giving up orderings and basicness.

We also hope to implement the proposed calculus and compare it in practice with
other methods of equality handling in tableau calculi.
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