
The SAD System: Deductive Assistance in an
Intelligent Linguistic Environment

Alexander Lyaletski, Andrei Paskevich, Konstantin Verchinine

Abstract— Formal methods are widely used in the com-
puter science community. Formal verification and certifi-
cation is an important component of any formal approach.
Such a work can not be done by hand, hence the software
that can do a part of it is rather required. The verification
methods are often based on a deductive system and “ver-
ify” means “prove”. Corresponding software is called proof
assistant.

We describe in this paper the System for Automated De-
duction (SAD): its architecture, input language, and rea-
soning facilities. We show how to use SAD as a proof assis-
tant. We outline specific features of SAD — a handy input
language, powerful reasoning strategy, opportunity to use
various low level inference engines. Examples and results of
some experiments are also given.

I. Introduction

The idea to use a formal language along with formal
symbolic manipulations to solve complex “common” prob-
lems, already appeared in G. W. Leibniz’s writings (1685).
The idea seemed to obtain more realistic status only in
the early sixties when first theorem proving programs were
created [1]. It is worth noting how ambitious was the ti-
tle of Wang’s article! Numerous attempts to “mechanize”
mathematics led to less ambitious and yet more realistic
idea of “computer aided” mathematics as well as to the
notion of “proof assistant” — a piece of software that is
able to do some more or less complex deductions for you.
Usually one has in mind either long but routine inferences
or a kind of case analysis with enormously large number of
possible cases. Both situations are embarrassing and “fault
intolerant” for humans.

A great number of projects proclaimed to be proof as-
sistants have been started since the beginning of seventies.
Most of them are already dead, some of them were stopped
and only a small number of them have survived. Typically,
a proof assistant has to put at user’s disposal at least two
things: a formal language to describe the domain the user
is interested in and a theorem proving program to autom-
atize deduction. Historically, the first sustained project to
do this was N. G. de Bruijn’s Automath Project [2].

Actually, one can clearly observe three “pure” branches
in the domain of proof assistance.

The first one, the mainstream, is aimed at formal veri-
fication and analysis of imperative or executable texts —
programs, software packages, hardware specifications, var-
ious protocol families. Domain description language is the
language of typed λ-terms, deduction system (or logical

A. Lyaletski is with the Faculty of Cybernetics, Kyiv National Taras
Shevchenko University, Ukraine (e-mail: lav@unicyb.kiev.ua)

A. Paskevich and K. Verchinine are with the Math-Info De-
partment, Paris 12 “Val de Marne” University, France (e-mail:
verko@logique.jussieu.fr)

framework) is based on a type theory, theorem proving
procedure is often built on top of term rewriting facilities.
Well known representatives are Coq [3], Isabelle (in par-
ticular Isabelle/HOL [4]), MetaPRL (successor to NuPRL)
[5], PVS [6], ACL2 (successor to Nqthm) [7].

The second branch consists of computer algebra systems.
Widely known REDUCE [8], Mathematica [9], Maple [10],
AXIOM [11] et al. are among them.

The third one deals with declarative, usually mathemat-
ical, texts and is aimed at “classical” proof verification.
Domain description language is mostly built on the top of
usual one- or multisorted first-order language augmented
with some navigation means (one needs to formalize texts,
not only isolated sentences). Logical framework is based on
some complete and sound calculus, theorem proving pro-
cedure implements a proof search method for above men-
tioned calculus (rather often resulution-like). Mizar [12]
(firstly mentioned in [13]) is probably the oldest active in-
habitant here. Other examples are LP, the prover for the
LARCH system [14], and IMPS [15]. (Note that the under-
lying logic of the latter project is an extension of the first-
order classical logic that admits partial functions). The
SAD system falls into this category, too.

There are projects that do not fit any of “pure” classes
above. They try to integrate a broad range of automated
proof methods and even more: proof planning facilities,
specific proof methods (e.g. reasoning by analogy), lemma
generation, etc. Those are for instance Omega [16], Theo-
rema [17], Isabelle/Isar [18].

An interesting comparison of some of existent mathemat-
ical assistants was done in [19].

Let us also note that almost any of the above listed sys-
tems provides a kind of a knowledge base in which some
basic preliminaries as well as results of past experiences are
accumulated. The elements of the knowledge base may be
freely reused that makes subsequent proofs more concise
and easier to build/verify automatically. The SAD system
contains no such base, so the input text to SAD must be
“self-contained”.

The SAD project is the continuation of a project initiated
by academician V. Glushkov at the Institute for Cybernet-
ics in Kiev more than 30 years ago [20]. The title of the
original project was “Evidence Algorithm” and its goal was
to formalize what is “evident” in mathematics. Axioms are
evident, everything that can be deduced from axioms in one
step is evident, everything that can be deduced from what
is already evident in one step is evident and so on. The
question was: provided a computer program which makes
deductions, is it possible to obtain something that is evi-
dent to the program but is not evident anymore to a human

mathematician? From the practical viewpoint such a sys-
tem could help a working mathematician to verify long and
tiresome but routine reasonings. To implement that idea,
three main components had to be developed: an inference
engine (we call it prover below) that implements the basic
level of evidence, an extensible collection of tools (we call
it reasoner) to reinforce the basic engine, and a formal in-
put language which must be close to natural mathematical
language and easy to use. The work on the “Evidence Al-
gorithm” was successfully started in the beginning of the
seventies, then interrupted and afterwards restored about
six years ago. Actually, a working version of the SAD sys-
tem exists and is available online [21], [22], [23], [24]. In
a general setting, SAD may be positioned as a declaration
style proof verifier that accepts input texts written in the
special formal language ForTheL [25], [23], uses an auto-
mated first-order prover as the basic inference engine and
possesses an original reasoner (which includes, in partic-
ular, a powerful method of definition expansion). As a
result, rather “coarse grained” proofs can be successfully
processed by SAD.

II. SAD: What does it do?

Generally speaking, SAD verifies the correctness of a
given input ForTheL text which, like any usual mathe-
matical text, consists of definitions, assumptions, affirma-
tions, theorems, proofs, etc. Figure 1 gives an idea of what
ForTheL text looks like.

What does “correct-

Theorem.

proof.

proof.

end.

qed.

Lemma.

Definition.
preliminaries

Fig. 1. ForTheL text’s structure

ness” of such an object
mean? We distinguish
three types of correct-
ness of a ForTheL text:
syntactical, ontological
and logical.

Syntactical correct-
ness (well-formedness)
is checked by the parser
and is a necessary con-
dition for any further
actions.

Ontological correct-
ness means that the
text in question con-
tains no occurrence of a
symbol (constant, function, notion or relation) that comes
from nowhere. Every such symbol must be either a signa-
ture symbol or introduced by a correct instance of a defi-
nition.

Logical correctness is imposed on particular affirmations
in the text: theorems, lemmas, intermediate statements in
proofs. Any such affirmation must be deducible from its
logical predecessors.

Ontological and logical correctness are, to some extent,
independent. It is quite obvious that an ontologically cor-
rect text may contain false affirmations. Also, an onto-
logically incorrect text may appear to be logically correct:
e.g., we may not know anything about the relation P and

text
ForTheL

fortified
sentence

first−order
text

verification manager

parser

SAD

Moses SPASS VampireOtter

proof task

evidence collector

ontological check

simplify

splitprove

unfold

reasonerfilter

sequent

FOL

TPTP

ForTheL

sentence

proof task

Fig. 2. Architecture of SAD

the constant c, yet prove (P (c) ⊃ P (c)). Nevertheless,
we prefer to require an input text to be ontologically cor-
rect for the following reasons. First, ontological verification
helps to indicate flaws in your formalization (similarly to
type checking in programming languages). Second, during
ontological verification the system obtains some important
knowledge about the text, which will be used later in logi-
cal verification.

III. SAD: How does it do that?

Look at Figure 2. All the principal components of the
SAD system are shown there. Let us consider some of them
in more details.

Parser accepts a ForTheL text, checks its syntactical cor-
rectness and converts the text into a normalized form that
will be convenient for further processing (e.g. all synonyms
are replaced with their canonical representatives).

Verification manager makes her round through the nor-
malized text sentence by sentence. Every sentence is first
sent to the “evidence collector” which accumulates so-
called term properties for the term occurrences in the sen-
tence.

Term properties are literals that tell us something im-
portant about a given term occurrence. A literal (i.e. an
atomic formula or its negation) L is considered to be a
property of a term t in a context Γ (usually, a set of log-
ical predecessors of a given occurrence of t in the text),
whenever t is a subterm of L and L is deducible in Γ. The
most important purpose of term properties is to hold infor-
mation about term “types”, which is usually expressed by
an atomic statement of the form “t is a 〈notion〉”. Some
simple properties, like nonemptiness, are highly useful, too.

Note that the evidence collector does not apply the rea-
soning facility of SAD to check the deducibility of a can-
didate literal. Instead, there is a simple syntactical pro-
cedure that scans the context of a given occurrence and
checks what can be “easily” inferred (by series of instan-
tiations and modus ponens) from the properties already
known. Consider a simple example: let S be declared as a
set of integer numbers and x be declared as an element of
S. Then, anywhere in view of these declarations, the term
−x will be known to be an integer.

Fortified with the found properties, the sentence is
passed through the ontological checker. Then, if the sen-
tence is an affirmation to be proved, the manager forms
a kind of sequent (we call it proof task) and sends it to
the reasoner. Note that the ontological checker may also
resort to the reasoner in order to find whether the guards
of a given definition or signature extension are satisfied.

Reasoner can be viewed as a kind of automated heuristic
based prover, supplied with a collection of proof task trans-
formation rules. This collection is not intended to form a
complete logic calculus. The purpose of the reasoner is not
to find the entire proof on its own, but rather to simplify
inference search for the background prover. The latter is
a combinatorial automated prover in classical first-order
logic, whose duty is to complete the proofs started by the
reasoner. If the background prover fails to find the infer-
ence at some instant, the reasoner may continue the proof
task transformation or try an alternative way, or just reject
the text.

IV. ForTheL language

Like in any other declarative language, the main entity
in ForTheL is sentence. The syntax of a ForTheL sen-
tence follows the rules of English grammar. Sentences are
built of units: statements, predicates, notions (that de-
note classes of objects) and terms (that denote individ-
ual entities). Units are composed of syntactical primi-
tives: nouns which form notions (e.g. “subset of”) or
terms (“closure of”), verbs and adjectives which form
predicates (“belongs to”, “compact”), symbolic primi-
tives that use a concise symbolic notation for predicates
and functions and allow to consider usual quantifier-free
first-order formulas as ForTheL statements. Of course, just
a little fragment of English is formalized in the syntax of
ForTheL.

There are three kinds of sentences in ForTheL: assump-
tions, selections, and affirmations. Assumptions are state-
ments preceded with the words “let” or “assume that”.
They serve to declare variables or to provide some hypothe-
ses for the following text. For example, the following sen-
tences are typical assumptions: “Let S be a nonempty
set.”, “Suppose that m is greater than n.”. Selec-
tions state the existence of representatives of notions and
can be used to declare variables, too. Here follows an ex-
ample of a selection: “Take an even prime number X.”.
Finally, affirmations are just statements: “If p divides
n - p then p divides n.”. The semantics of a sen-
tence is determined by a series of transformations that

convert a ForTheL statement to a first-order formula —
the formula image. For example, the formula image of a
simple statement “all closed subsets of any compact
set are compact” is:

∀ A ((A is a set ∧ A is compact) ⊃
∀ B ((B is a subset of A ∧ B is closed) ⊃

B is compact))

ForTheL sentences form sections: top-level ones (axioms,
definitions, theorems) and low-level ones (proofs, proof
cases, raw subproof blocks). Sections are used to structure
the text, they limit the scope of assumptions and variable
declarations. The language supports various proof schemes
like proof by contradiction, by case analysis, and by general
induction.

The last scheme merits special consideration. Whenever
a proof by induction is encountered, the parser automati-
cally creates an appropriate induction hypothesis and re-
formulates the actual statement to be verified. This induc-
tion hypothesis mentions some binary relation which we
declare a well-founded ordering (hence, suitable for induc-
tion proofs). Note that we cannot express the very prop-
erty of well-foundness in ForTheL (since it is essentially a
first-order language), and so the correctness of this decla-
ration is unverifiable. We must take it for granted. After
that purely syntactical transformation, the proof section
and the transformed statement itself can be verified in a
first-order setting, and the reasoner of SAD has no need in
specific means to build induction proofs.

Is ForTheL practical as a formalization language? Our
numerous experiments (not only recent but also the ancient
ones) show that rather often the ForTheL text is sufficiently
close to the original hand-made one. Look for instance at
the following human-written text:

A partially ordered set U is a complete lattice if any
set in U has an infimum and a supremum in U .

A function on U is called isotone if for all x, y ∈ U ,
x 6 y implies f(x) 6 f(y).

Theorem (Tarski). Let U be a complete lattice and f ,
an isotone function on U . The set of all fixed points
of f is a complete lattice.

Proof. Let S be the set of fixed points of f . Con-
sider an arbitrary set T ⊆ S, possibly empty. Let us
show that T possesses a supremum in S (the proof for
infimum is quite similar).

Consider the set Q of all the upper bounds x of T
such that f(x) 6 x. Since U is a complete lattice,
there exists an infimum q of Q.

First, f(q) is a lower bound of Q. Indeed, for any
x ∈ Q, we have q 6 x, hence f(q) 6 f(x) 6 x.

Second, f(q) is an upper bound of T . Indeed, any
x ∈ T is a lower bound of Q, hence x 6 q, hence
x = f(x) 6 f(q).

Therefore, f(q) = q. Indeed, f(q) 6 q, since q is

the infimum of Q. But then f(f(q)) 6 f(q), hence
f(q) ∈ Q, hence q 6 f(q).

So q is a fixed point of f , hence, belongs to S. Consider
any upper bound r of T in S. Obviously, r belongs to
Q, so q 6 r. Hence q is the supremum of T in S. �

This text can be translated to ForTheL as follows:

Definition DefCLat. A complete lattice
is a set S such that every subset of S
has an infimum in S and a supremum in S.

Definition DefIso.
f is isotone iff for all x,y << Dom f
x <= y => f(x) <= f(y).

Theorem Tarski.
Let U be a complete lattice.
Let f be an isotone function on U.
Let S be the set of fixed points of f.
S is a complete lattice.

Proof.
Let T be a subset of S.

Let us show that T has a supremum in S.
Take Q = { x << U | f(x) <= x and
x is an upper bound of T in U }.

Take an infimum q of Q in U.
f(q) is a lower bound of Q in U.
f(q) is an upper bound of T in U.
q is a fixed point of f.
Thus q is a supremum of T in S.

end.

Let us show that T has a supremum in S.
SAD does not support proofs by analogy,
so we have to repeat here our reasoning.
...

end.
qed.

So in that example the translation is almost straight-
forward. Certainly, it is not always the case but there is
necessarily a fruitful side-effect of the hard formalization
work — one understands much better the subject after do-
ing it.

V. Reasoner

It was already noted that the reasoner applies a collec-
tion of transformation rules to the given proof task. The
richer the reasoner’s collection of transformation rules is,
the more complex proof tasks it can fulfil, the more coarse-
grained and terse mathematical texts can be verified by the
system. The simplest reasoner would just send the received
proof task to the background prover — that was the point
where the development of SAD has started.

At present, the capabilities of the reasoner are as follows:
propositional goal splitting, formula simplification with re-
spect to accumulated term properties, simple filtering of

premises according to explicit references in the text, incre-
mental definition expansion.

The reasoner of SAD uses term properties to simplify
goal formulas and formulas which arise from definition ex-
pansion: any literal that appears to hold as a property of
some of its subterms can be replaced by logical constant
“truth” (indeed, it can be deduced from the current con-
text and, hence, is redundant). Similarly, a literal can be
replaced by “false”, if its complement occurs among the
properties of its subterms.

Definitions, taken as straight logical formulas, are quite
difficult to handle in an automated prover: they tend to
drastically extend the search space and produce hardly
catchable redundancies. Besides, it costs additional infer-
ence steps to eliminate definition guards. Therefore, we
prefer to hide definitions from the prover and apply them
in the reasoner (the preliminary check of ontological cor-
rectness comes in handy here). Surely, the reasoner can-
not know precisely which occurrences must be unfold, and,
since exhaustive unfolding up to the signature symbols is
obviously impractical, some strategy of expansion must be
provided.

In SAD, we have considered several expansion strategies.
The one used in the current version of the system is as
follows. At first, we try to prove the goal without any
expansion at all. If the prover fails to find the proof, we
choose some “promising” occurrences in the neighborhood
of the goal or in the goal itself. What is promising and what
is not, is decided by several heuristics taking into account
the level of a symbol in the hierarchy of definitions and the
properties of the terms occurring in the goal formula. After
the first wave of expansion is made, we split and simplify
the obtained proof task and call the prover again. Where
it fails, we apply our strategy again to choose and unfold
some new occurrences, and the whole process is repeated.

This strategy does not use backtracking, that is, we un-
fold definitions incrementally, wave after wave, and never
return to previous states of the proof task. In order to
avoid drowning of important information (which can oc-
cur if the reasoner unfolds some occurrences that should
rather have rest and participate in the proof “as is”), we
apply definitions in a non-destructive way, preserving the
original symbol at the side of the inserted formula.

VI. Background prover

The native background prover of SAD, called Moses, is
based on a special goal-driven sequent calculus [22], [23].
The prover explores the search space using bounded depth-
first search with iterative deepening and backtracking, it
uses constraints and folding-up [26] to increase the effi-
ciency of search. In order to provide SAD with equality
handling, Moses implements a variation of Brand’s modifi-
cation method [27]. The original notion of admissible sub-
stitution used in the calculus allows to preserve the initial
signature of the task so that accumulated unification prob-
lems (sets of equations) can be sent to a specialized solver,
e.g. an external computer algebra system (this functional-
ity is not yet implemented).

We call Moses native, because the background prover is
supposed to be independent from SAD by design, so that
an external theorem proving system like Otter [28], SPASS
[29], or Vampire [30] could be used. Note that this ca-
pability of SAD provides us with a (yet another) scale to
compare automated theorem provers: trying them on rel-
atively simple problems in complex and heavily redundant
contexts rather than on hard problems with a preadjusted
set of relevant premises (mostly the case for problems in
the famous TPTP library [31]).

In our experiments with the three aforementioned
provers, the best results were obtained with SPASS. This is
due, in particular, to its original technique of handling sort-
like information, which abounds in mathematical texts.

VII. Experiments

In the course of development of SAD, we have conducted
a number of essays on formalization and verification of non-
trivial mathematical results:

• Ramsey’s Finite and Infinite theorems (as presented in
[32]).
• Stability of a refinement relation over a number of oper-
ations on program specifications [33].
• Some properties of finite groups (as presented in [34]).
• Cauchy-Bouniakowsky-Schwarz inequality.
• The square root of a prime number is irrational: 30 state-
ments in preliminaries (integer numbers), 5 definitions, 7
lemmas, about 50 sentences in the proof of the main lemma
(any prime dividing a product divides one of the factors),
10 sentences in the proof of the theorem (see [23] for de-
tailed explanation of this experiment).
• Chinese remainder theorem and Bezout’s identity in
terms of abstract rings: 25 statements in preliminaries (ring
axioms, operations on sets), 7 definitions (ideal, principal
ideal, greatest common divisor, etc), 3 lemmas, 8 sentences
in the proof of CRT, about 30 sentences in the proof of Be-
zout’s identity.
• Tarski’s fixed point theorem (cited above): 11 statements
in preliminaries (ordered sets), 7 definitions (upper and
lower bounds, supremum, infimum, complete lattice, iso-
tone function, fixed point), 2 lemmas, 18 sentences in the
proof of the theorem.

The texts listed above were written in ForTheL and auto-
matically verified in SAD (using SPASS as the background
prover). This work have taught us many important lessons.
To mention some:

• Formalization style is critical: the choice of symbols to
introduce in definitions, the choice of preliminary facts, and
even the way a proof is structured may decide whether the
text will be verified or not.
• It is highly desirable to comprehend the proofs before
writing them in ForTheL. The SAD system may succeed
to fulfil the gaps in a well thought-out reasoning, but it will
not invent one for you.
• In most cases, the background prover finds the proof in
three seconds — or does not find it at all.

VIII. Conclusion

Certainly, we could not give here a detailed description
of all nice features of SAD. SAD is a powerful system and
its power lies in its reasoning facility. Experiments show
that, for example, the specific strategy of definition pro-
cessing contributes a lot to the success of the whole veri-
fication process. If we use definitions straightforwardly —
convert them into formula images and add the correspond-
ing premises to the sequent that goes into a prover — we
have no chance to verify the proof of Tarski fixed-point the-
orem as it is formulated above, even when the winner of
CASC competitions is chosen as the background prover.

SAD is not a perfect system (if any!). One can easily
see how it may be improved and developed. Our research
and implementation plans are: extend ForTheL and SAD
with some means to talk and reason about second-order
objects (functions, vectors, sequences) and operations on
them; provide users with a facility to implement custom
strategies for the reasoner; develop and implement a math-
ematical library of SAD to accumulate verified portions of
mathematical knowledge and to support further (deeper)
advances in formalization.

Where can the SAD system be useful? In any domain
where precise mathematical style formalism is appreciated
as the means of problem description. Note that the prob-
lem formalization is always the hardest part of the whole
work. Right formalization is a 80% guarantee of a success-
ful verification.

Sometimes we wonder: why are we doing all that? Yes,
it is interesting, what else? It seems that at least two ques-
tions are extremely attractive for those who live in the do-
main of automated deduction. First, is the mathematical
creative work formalizable? Are there any limits to for-
malization process? And second, how far can the power of
computers go? Ad infinitum?

References

[1] Hao Wang, “Towards mechanical mathematics,” IBM J. of
Research and Development, vol. 4, pp. 2–22, 1960.

[2] N. G. de Bruijn, “The mathematical language AUTOMATH,
its usage and some of its extensions,” in Symposium on Au-
tomatic Demonstration, M. Laudet, D. Lacombe, L. Nolin, and
M. Schützenberger, Eds. 1970, vol. 125 of Lecture Notes in Com-
puter Science, pp. 29–61, Springer-Verlag.

[3] B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. Filliatre,
E. Giménez, H. Herbelin, G. Huet, C. Muñoz, C. Murthy, C. Par-
ent, C. Paulin, A. Säıbi, and B. Werner, “The Coq proof assis-
tant reference manual — version v6.1,” Tech. Rep. 0203, INRIA,
1997.

[4] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, vol. 2283 of Lecture
Notes in Computer Science, Springer-Verlag, 2002.

[5] Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E.
Aydemir, Eli Barzilay, Yegor Bryukhov, Richard Eaton, Adam
Granicz, Alexei Kopylov, Christoph Kreitz, Vladimir N. Krup-
ski, Lori Lorigo, Stephan Schmitt, Carl Witty, and Xin Yu,
“MetaPRL — modular logical environment,” in Theorem Prov-
ing in Higher Order Logics: 16th International Conference,
TPHOLs 2003, David Basin and Burkhart Wolff, Eds. 2003,
vol. 2758 of Lecture Notes in Computer Science, pp. 287–303,
Springer-Verlag.

[6] Sam Owre, John M. Rushby, and Natarajan Shankar, “PVS: a
prototype verification system,” in Automated Deduction: 11th
International Conference, CADE-11, Deepak Kapur, Ed. 1992,

vol. 607 of Lecture Notes in Computer Science, pp. 748–752,
Springer-Verlag.

[7] Matt Kaufmann and J Strother Moore, “An industrial strength
theorem prover for a logic based on Common Lisp,” IEEE Trans-
actions on Software Engineering, vol. 23, no. 4, pp. 203–213,
Apr. 1997.

[8] Anthony C. Hearn, “REDUCE: A user-oriented interactive sys-
tem for algebraic simplification,” in Interactive Systems for Ex-
perimental Applied Mathematics, M. Klerer and J. Reinfelds,
Eds., pp. 79–90. Academic Press, New York, 1968.

[9] Stephen Wolfram, The Mathematica Book, Fifth Edition, Wol-
fram Media, Inc., 2003.

[10] Frank Garvan, The Maple Book, CRC Press, 2001.
[11] R. D. Jenks and R. S. Sutor, Axiom: The Scientific Computa-

tion System, Springer-Verlag, 1992.
[12] Andrzej Trybulec and Howard Blair, “Computer assisted rea-

soning with Mizar,” in Proc. 9th International Joint Conference
on Artificial Intelligence, Aug. 1985, pp. 26–28.

[13] A. Trybulec, “Informationslogische Sprache Mizar,” Dokumen-
tation-Information 33, TU Ilmenau, 1977.

[14] Stephen J. Garland and John V. Guttag, “A guide to LP, the
Larch Prover,” Tech. Rep., MIT Laboratory for Computer Sci-
ence, Dec. 1991.

[15] W. M. Farmer, J. D. Guttman, and F. J. Thayer, “IMPS: an
interactive mathematical proof system (system description),” in
Automated Deduction: 10th International Conference, CADE-
10, M. E. Stickel, Ed. 1990, vol. 449 of Lecture Notes in Com-
puter Science, pp. 653–654, Springer-Verlag.

[16] Christoph Benzmüller, Lassaad Cheikhrouhou, Detlef Fehrer,
Armin Fiedler, Xiaorong Huang, Manfred Kerber, Michael
Kohlhase, Karsten Konrad, Andreas Meier, Erica Melis, Wolf
Schaarschmidt, Jörg H. Siekmann, and Volker Sorge, “Ωmega:
Towards a mathematical assistant,” in Automated Deduction:
14th International Conference, CADE-14, William McCune,
Ed. 1997, vol. 1249 of Lecture Notes in Computer Science, pp.
252–255, Springer-Verlag.

[17] Bruno Buchberger, Tudor Jebelean, Franz Kriftner, Mircea
Marin, Elena Tomuta, and Daniela Vasaru, “A survey of
the Theorema project,” in ISSAC’97 — Proc. International
Symposium on Symbolic and Algebraic Computation, Wolfgang
Küchlin, Ed., Maui, Hawaii, USA, 1997, pp. 384–391, ACM
Press.

[18] Markus Wenzel, “Isar — a generic interpretative approach
to readable formal proof documents,” in Theorem Prov-
ing in Higher Order Logics: 12th International Conference,
TPHOLs’99. 1999, vol. 1690 of Lecture Notes in Computer Sci-
ence, pp. 167–184, Springer-Verlag.

[19] Freek Wiedijk, Ed., The Seventeen Provers of the World, vol.
3600 of Lecture Notes in Computer Science, Springer-Verlag,
2006.

[20] V. M. Glushkov, “Some problems of automata theory and ar-
tificial intelligence (in Russian),” Kibernetika, vol. 2, pp. 3–13,
1970.

[21] A. Lyaletski, K. Verchinine, and A. Paskevich, “On verification
tools implemented in the System for Automated Deduction,”
in Proc. 2nd CoLogNet Workshop on Implementation Technol-
ogy for Computational Logic Systems (ITCLS’2003), Pisa, Italy,
Sept. 2003, pp. 3–14.

[22] Alexander Lyaletski, Andrey Paskevich, and Konstantin Verchi-
nine, “Theorem proving and proof verification in the system
SAD,” in Mathematical Knowledge Management: Third In-
ternational Conference, MKM 2004, Andrea Asperti, Grzegorz
Bancerek, and Andrzej Trybulec, Eds. 2004, vol. 3119 of Lecture
Notes in Computer Science, pp. 236–250, Springer-Verlag.

[23] A. Lyaletski, A. Paskevich, and K. Verchinine, “SAD as a math-
ematical assistant — how should we go from here to there?,” J.
of Applied Logic, (to appear).

[24] “The Evidence Algorithm project,” http://ea.unicyb.kiev.ua.
[25] K. Vershinin and A. Paskevich, “ForTheL — the language of

formal theories,” International Journal of Information Theories
and Applications, vol. 7, no. 3, pp. 120–126, 2000.

[26] R. Letz and G. Stenz, “Model elimination and connection
tableau procedures,” in Handbook for Automated Reasoning,
A. Robinson and A. Voronkov, Eds., vol. II, pp. 2017–2116. El-
sevier Science, 2001.

[27] D. Brand, “Proving theorems with the modification method,”
SIAM Journal of Computing, vol. 4, pp. 412–430, 1975.

[28] William McCune, “Otter 3.0 reference manual and guide,”

Tech. Report ANL-94/6, Argonne National Laboratory, Ar-
gonne, USA, 1994.

[29] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand, Enno
Keen, Christian Theobald, and Dalibor Topic, “SPASS ver-
sion 2.0,” in Automated Deduction: 18th International Confer-
ence, CADE-18, Andrei Voronkov, Ed. 2002, vol. 2392 of Lecture
Notes in Computer Science, pp. 275–279, Springer-Verlag.

[30] Alexandre Riazanov and Andrei Voronkov, “The design and
implementation of VAMPIRE,” AI Communications, vol. 15,
no. 2–3, pp. 91–110, 2002.

[31] Geoff Sutcliffe, Christian B. Suttner, and Theodor Yemenis,
“The TPTP problem library,” in Automated Deduction: 12th
International Conference, CADE-12, Alan Bundy, Ed. 1994,
vol. 814 of Lecture Notes in Computer Science, pp. 252–266,
Springer-Verlag, see also http://tptp.org.

[32] R. L. Graham, Rudiments of Ramsey Theory, AMS, 1981.
[33] Amel Mammar, Un environnement formel pour le

développement d’application bases de données, Ph.D. thesis,
Conservatoire National des Arts et Métiers, France, 2002.

[34] J.-P. Serre, Cours d’Arithmetique, Presses Universitaires de
France, 1970.

