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Abstract. It is well-known that the connection refinement of clause
tableaux with paramodulation is incomplete (even with weak connec-
tions). In this paper, we present a new connection tableau calculus for
logic with equality. This calculus is based on a lazy form of paramodu-
lation where parts of the unification step become auxiliary subgoals in
a tableau and may be subjected to subsequent paramodulations. Our
calculus uses ordering constraints and a certain form of the basicness
restriction.

1 Introduction

The Model Elimination proof procedure was originally introduced by Loveland
as a resolution-based calculus with clauses of a special form [1]. Later it was
reconsidered as a clause tableau calculus, where proof search is guided by con-
nections between clauses [2]. In this form, the method is also referred to as
connection tableaux.

Connection tableaux are a powerful goal-directed refinement of general clause
tableaux. Moreover, strong search pruning methods and efficient implementation
techniques were developed for this calculus [3].

It is tempting to adapt connection tableaux for logic with equality by intro-
ducing paramodulation. That is, we could make a pair (equality to paramodulate
by, literal to paramodulate in) constitute a connection, too, and add rules for
paramodulation in a branch. Unfortunately, such a calculus turns out to be in-
complete. Consider the following set of clauses: {a ≈ b, c ≈ d, ¬P (f(a), f(b)),
¬Q(g(c), g(d)), P (x, x) ∨ Q(y, y)}. Let us try to build a refutation of S in that
hypothetical calculus:

a ≈ b

¬P (f(a), f(b))

¬P (f(b), f(b))

P (x, x)

⊥ · (x = f(b))

Q(y, y)

?

¬Q(g(c), g(d))

c ≈ d

¬Q(g(d), g(d))

P (x, x)

?

Q(y, y)

⊥ · (y = g(d))

We cannot continue the first inference because the literal Q(y, y) does not
match Q(g(c), g(d)) and the equality c ≈ d cannot be applied to Q(y, y), either.
The second inference will fail in a similar way.



The fact that paramodulation works fine in resolution-style calculi [4] and
general clause tableaux [5, 6] is due to a flexible order of inferences which is
impossible in a goal-directed calculus. The calculus could be made complete if we
allow paramodulation into variables and add the axioms of functional reflexivity
(f(x) ≈ f(x), g(x) ≈ g(x), etc) in order to construct new terms [7]. However,
this approach is quite inefficient in practice, since functional reflexivity allows
us to substitute an arbitrary term for any variable.

In order to solve problems with equality, existing competitive connection
tableau provers [8] employ various forms of Brand’s modification method [9–11].
This method transforms a clause set with equality into an equiconsistent set
where the equality predicate does not occur. In addition, a complete procedure
was developed upon a combination of goal-directed proof search in tableaux and
a bottom-up equality saturation using basic ordered paramodulation [12].

In this paper we propose an alternative approach for equality handling in
connection tableaux which is based on lazy paramodulation. This technique was
originally introduced by J. Gallier and W. Snyder as a method for general E-
unification [13] and used later to overcome incompleteness of the set-of-support
strategy (another example of a goal-directed method) in the classical paramod-
ulation calculus [14].

So, what is lazy paramodulation? Above, we noted that the literal Q(y, y)
cannot be unified with Q(g(c), g(d)). But let us postpone unification until the
equality c ≈ d is applied to the second literal. Let us make the equality Q(y, y) =
Q(g(c), g(d)) not a constraint to solve but an additional subgoal to prove. The
clause set from the previous counter-example can be easily refuted in such a
calculus:

P (x, x)

¬P (f(a), f(b))

f(a) 6≈ x

a ≈ b

f(b) 6≈ x

⊥ · (f(b) = x)

a 6≈ a

⊥

f(b) 6≈ x

⊥ · (f(b) = x)

Q(y, y)

¬Q(g(c), g(d))

g(c) 6≈ y

c ≈ d

g(d) 6≈ y

⊥ · (g(d) = y)

c 6≈ c

⊥

g(d) 6≈ y

⊥ · (g(d) = y)

Though the approach seems to work, an unrestricted procedure will be no
better than the use of functional reflexivity. Indeed, if we postpone any unifi-
cation, we can apply any equality to any non-variable term. Can we refine the
method? Would it be complete? In what follows, we give positive answers to
these questions.

The paper is organized as follows. The next section contains preliminary
material. In Section 3 we explain the method of constrained equality elimination
[11] in a form adapted for the completeness proof in the next section. A refined
version of connection tableaux with lazy paramodulation is introduced and its
completeness is proved in Section 4. We conclude with a brief summary and
plans for future work.



2 Preliminaries

We work in first-order logic with equality in clausal form. A clause is a disjunction
of literals; a literal is either an atomic formula or the negation of an atomic
formula. We consider clauses as unordered multisets.

The equality predicate is denoted by the symbol ≈. We abbreviate the nega-
tion ¬(s ≈ t) as s 6≈ t. Negated equalities will be called disequalities to be distin-
guished from inequalities used in constraints (see below). We consider equalities
as unordered pairs of terms, i.e. a ≈ b and b ≈ a stand for the same formula.

The symbol ' will denote “pseudoequality”, a binary predicate without any
specific semantics. We use it to replace the symbol ≈ when we pass to logic
without equality. The order of arguments becomes significant here: a ' b and
b ' a denote different formulas. The expression s 6' t stands for ¬(s ' t).

In what follows, we denote non-variable terms by the letters p and q, and
arbitrary terms with the letters l, r, s, and t. Substitutions are denoted by
the letters σ and τ . The result of applying a substitution σ to an expression
(term, literal, or clause) E is denoted by Eσ. We write E[s] to indicate that s
is a subterm of E and write E[t] to denote the expression obtained from E by
replacing one occurrence of s by t. Letters in bold (s, x, etc) stand for sequences
of terms and variables.

We use constraints as defined in [11]. A constraint is a, possibly empty, con-
junction of atomic constraints s = t or s � t or s � t. The letters γ and δ
are used to denote constraints; the symbol > denotes the empty conjunction.
A compound constraint (a = b ∧ b � c) can be written in an abbreviated form
(a = b � c). An equality constraint (s = t) stands for (s1 = t1 ∧ · · · ∧ sn = tn).

A substitution σ solves an atomic constraint s = t if the terms sσ and tσ are
syntactically identical. It is a solution of an atomic constraint s � t (s � t) if
sσ > tσ (sσ > tσ, respectively) with respect to some reduction ordering > that
is total on ground terms. We say that σ is a solution of a general constraint γ
if it solves all atomic constraints in γ; γ is called satisfiable whenever it has a
solution.

A constrained clause tableau is a finite tree T. The root node of T contains
the initial set of clauses to be refuted. The non-root nodes are pairs L · γ where
L is a literal and γ is a constraint.

Any branch that contains the literal ⊥ (denoting the propositional falsum)
is considered as closed. A tableau is closed, whenever each branch in it is closed
and the overall set of constraints in it is satisfiable.

An inference starts from the single root node (the initial clause set). Each
inference step expands some branch in the tableau by adding new leaves under
the leaf of the branch in question. Symbolically, we describe an inference rule as
follows:

S ‖ Γ

L1 · γ1 · · · Ln · γn

where S is the initial set of clauses (the root node), Γ is the branch being
expanded (with constraints not mentioned), and (L1 · γ1), . . . , (Ln · γn) are the



added nodes (empty constraints will be omitted). Whenever we choose some
clause C in S to participate in the inference, we implicitly rename all variables
in C to some fresh variables.

A closed tableau built from the initial set S will be called a refutation of S.
In order to illustrate the proposed notation, we present the classical connec-

tion tableau calculus (denoted by CT) in Figure 1.

Start rule: S, (L1 ∨ · · · ∨ Lk) ‖
L1 · · · Lk

Expansion rules:

S, (¬P (s) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, P (r)

⊥ · (s = r) L1 · · · Lk

S, (P (s) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ,¬P (r)

⊥ · (s = r) L1 · · · Lk

Termination rules:

S ‖ Γ,¬P (s), ∆, P (r)

⊥ · (s = r)

S ‖ Γ, P (s), ∆,¬P (r)

⊥ · (s = r)

Fig. 1. Connection tableaux CT

This calculus is sound and complete in first-order logic without equality [3]:

Proposition 1. An equality-free set of clauses S is unsatisfiable if and only if
S can be expanded to a closed CT-tableau. Moreover, if S is unsatisfiable but any
proper subset of S is consistent, then for any C ∈ S, there is a CT-refutation
of S that starts with C.

3 Constrained equality elimination

Constrained equality elimination (CEE) was proposed by L. Bachmair et al. in
[11]. This is a variation of Brand’s modification method improved by the use of
ordering constraints. Here, we describe CEE-transformation in a slightly modi-
fied form as compared with the original explanation in [11]. First, we allow non-
equality predicate symbols. Second, we require any two different occurrences of
a non-variable subterm to be abstracted separately, introducing two different
fresh variables during monotonicity elimination (flattening). Third, we apply
the monotonicity elimination rules after symmetry elimination. Fourth, we work
with traditional clauses and incorporate the ordering constraints into the infer-
ence rules. Fifth, we handle occurrences of negated variable equality x 6≈ y in a
different way. These modifications are minor and do not affect the main result
(Proposition 2).

The four groups of rewriting rules in Figure 2 are applied in the order of
their appearance to clauses from the initial set S. Let us denote the intermediate



1. Elimination of symmetry:

s ≈ t ∨ C

s ' t ∨ C t ' s ∨ C

p 6≈ s ∨ C

p 6' s ∨ C

x 6≈ q ∨ C

q 6' x ∨ C

2. Elimination of monotonicity:

P (s1, p, s2) ∨ C

P (s1, û, s2) ∨ p 6' û ∨ C

¬P (s1, p, s2) ∨ C

¬P (s1, û, s2) ∨ p 6' û ∨ C

f(s1, p, s2) ' t ∨ C

f(s1, û, s2) ' t ∨ p 6' û ∨ C

f(s1, p, s2) 6' t ∨ C

f(s1, û, s2) 6' t ∨ p 6' û ∨ C

t ' f(s1, p, s2) ∨ C

t ' f(s1, û, s2) ∨ p 6' û ∨ C

t 6' f(s1, p, s2) ∨ C

t 6' f(s1, û, s2) ∨ p 6' û ∨ C

3. Elimination of transitivity:

t ' q ∨ C

t ' û ∨ q 6' û ∨ C

p 6' q ∨ C

p 6' û ∨ q 6' û ∨ C

4. Introduction of reflexivity:
z ' z

Fig. 2. Constrained equality elimination

result of transformation after the i-th group by CEEi(S). Variables with caret
are considered to be new in the corresponding clause. Recall that p and q stand
for non-variable terms, whereas l, r, s, and t denote arbitrary terms.

The first group replaces the equality symbol ≈ with the non-logical predicate
symbol ' and eliminates the need for explicit symmetry axioms for '. The sec-
ond group flattens the terms, thus eliminating the need for explicit monotonicity
axioms for '. The third group splits equality literals, thus eliminating the need
for explicit transitivity axioms for '. The last rule explicitly adds the reflexivity
axiom to the clause set.

In the resulting set of clauses CEE(S) (= CEE4(S)), resolutions correspond
to paramodulations in the initial set. The introduced variables are, in some sense,
“values” of the terms on the left hand side of new disequalities. By “value” we
mean the result of all paramodulations into and under the term.

Now, we assign an atomic constraint p � s to each negative literal p 6' s that
occurs in CEE(S). We assign a constraint x = y to each negative literal x 6' y in
CEE(S). We assign a constraint s � t to each positive literal s ' t in CEE(S),
except for the reflexivity axiom z ' z which does not acquire any constraint.
A constrained ground instance of a clause C from CEE(S) is any ground clause
Cσ such that the substitution σ is a solution of all atomic ordering constraints
assigned for equalities and disequalities in C.



The following proposition is a counterpart of Theorem 4.1 from [11].

Proposition 2. A clause set S is satisfiable if and only if the set of all con-
strained ground instances of clauses from CEE(S) is satisfiable.

Consider the calculus CT' in Figure 3. In essence, it is just an extension of
CT with ordering constraints for equality literals.

In the Start and Expansion rules, the chosen clause is not (z ' z)

Start rule: Reduction rule:

S, (L1 ∨ · · · ∨ Lk) ‖
L1 · · · Lk

S, (z ' z) ‖ Γ, s 6' t

⊥ · (s = t)

Expansion rules:

S, (¬P (s) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, P (r)

⊥ · (s = r) L1 · · · Lk

S, (P (s) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ,¬P (r)

⊥ · (s = r) L1 · · · Lk

S, (p 6' t ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, l ' r

⊥ · (p = l � r = t) L1 · · · Lk

S, (l ' r ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, p 6' t

⊥ · (p = l � r = t) L1 · · · Lk

Termination rules:

S ‖ Γ,¬P (s), ∆, P (r)

⊥ · (s = r)

S ‖ Γ, P (s), ∆,¬P (r)

⊥ · (s = r)

S ‖ Γ, p 6' t, ∆, l ' r

⊥ · (p = l � r = t)

S ‖ Γ, l ' r, ∆, p 6' t

⊥ · (p = l � r = t)

Fig. 3. Connection tableaux for CEE-clauses (CT')

Proposition 3. A clause set S is unsatisfiable if and only if the set CEE(S)
can be refuted in the CT' calculus.

Proof. We give just an outline of the proof, since the details are quite obvious.
First, let us show the soundness of CT' with respect to CEE-transformed clause
sets. Consider a closed CT'-tableau T refuting the set CEE(S).

The substitution that solves the overall set of constraints from T, can be
completed to a ground substitution, giving us a set of ground instances of clauses
from CEE(S). This set is unsatisfiable since we can transform T to a well-formed
CT-refutation by erasing ordering constraints.

It is easy to see that these ground instances are valid constrained ground in-
stances mentioned in Proposition 2. Indeed, each positive equality literal (l ' r)
(except the reflexivity axiom) that takes part in the inference acquires the cor-
responding strict inequality constraint (l � r) during an expansion or a ter-
mination step. Each disequality (s 6' t) is either reduced with the help of the



reflexivity axiom or resolved with some positive equality literal. In both cases,
the constraint (s � t) will be satisfied. A disequality (x 6' y) can only be reduced
by reflexivity, so that the constraint (x = y) will be satisfied, too.

Let us prove the completeness of CT' with respect to CEE-transformed
clause sets. Consider the set S of all constrained ground instances of clauses
from CEE(S). By Proposition 2, S is unsatisfiable, therefore we can build a
CT-refutation of S that does not start with the reflexivity axiom (z ' z). Then
we simply lift the inference to the first order and transform that CT-tableau
into a CT'-refutation of CEE(S). ut

4 Connection tableaux with lazy paramodulation

Now we present a refined version of the calculus sketched in the introduction.
The inference rules of the calculus LPCT are given in Figure 4. The variables
with bar are considered to be fresh in the tableau.

The proposed calculus contains several improvements in comparison with
what was sketched at the beginning of the paper. First of all, we use lazy
paramodulation only in expansion steps; paramodulation and termination steps
do not postpone unification. Second, the “laziness” itself is more restricted now:
any two non-variable terms whose unification is postponed should have the same
functional symbol at the top. Third, we use ordering constraints. Fourth, we use
basic paramodulation.

It should be noted that there are two different forms of the basicness restric-
tion. The first one forbids paramodulation into terms introduced by instanti-
ation. The corresponding refinement of lazy paramodulation was described by
M. Moser [15]. This restriction is fully adopted in LPCT, since we work with
constrained literals and do not apply substitutions in the course of inference.

The second, stronger form additionally prevents paramodulation into terms
introduced by the earlier paramodulation steps [16]. In this form, basicness is
used in LPCT, too (note the variables with bar), though not everywhere: two
of the three equality expansion rules leave the inserted term “on the surface”,
allowed for subsequent paramodulations.

The soundness of LPCT can be shown directly, by checking that inference
rules generate only what follows from the initial clause set and the current
branch.

We prove completeness of LPCT by transforming a CT'-refutation of the
set of CEE-rewritten clauses into an LPCT-refutation of the initial clause set.

Proposition 4. For any unsatisfiable clause set S there exists a refutation of
S in LPCT.

Proof. We begin by introducing an intermediate calculus LPCT', whose infer-
ence rules are those of LPCT with the equality symbol ≈ replaced with '.

At the first stage we build a closed CT'-tableau refuting the set CEE(S)
(by Proposition 3) and transform it into an LPCT'-refutation T of CEE3(S).
In Figure 5, we show how the termination and expansion rules of CT' can be



Start rule: Reduction rule:

S, (L1 ∨ · · · ∨ Lk) ‖
L1 · · · Lk

S ‖ Γ, s 6≈ t

⊥ · (s = t)

Expansion rules:

S, (¬P (s) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, P (r)

⊥ · (v̄ = r) s1 6≈ v̄1 · · · sn 6≈ v̄n L1 · · · Lk

S, (P (s) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ,¬P (r)

⊥ · (v̄ = r) s1 6≈ v̄1 · · · sn 6≈ v̄n L1 · · · Lk

Equality expansion rules:

S, (z ≈ r ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, L[p]

L[w̄] · (p = z � w̄) r 6≈ w̄ L1 · · · Lk

S, (f(s) ≈ r ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, L[p]

L[w̄] · (p = f(v̄) � w̄) r 6≈ w̄ s1 6≈ v̄1 · · · sn 6≈ v̄n L1 · · · Lk

S, (L[f(s)] ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, l ≈ r

L[w̄] · (f(v̄) = l � r = w̄) s1 6≈ v̄1 · · · sn 6≈ v̄n L1 · · · Lk

Paramodulation rules:

S ‖ Γ, L[p], ∆, l ≈ r

L[w̄] · (p = l � r = w̄)

S ‖ Γ, l ≈ r, ∆, L[p]

L[w̄] · (p = l � r = w̄)

Termination rules:

S ‖ Γ,¬P (s), ∆, P (r)

⊥ · (s = r)

S ‖ Γ, P (s), ∆,¬P (r)

⊥ · (s = r)

Fig. 4. Connection tableaux with lazy paramodulation LPCT



simulated in LPCT', so that leaves in open branches and generated constraints
stay the same. Recall that every equality or disequality in CEE(S) has a variable
on the right hand side (by definition of CEE).

At the second stage we unflatten the clauses. We will call suspicious those
variables with caret which were introduced by CEE-transformation. We will
call a clause suspicious if a suspicious variable occurs in it. We will call an
LPCT'-inference step suspicious if it is a start step or expansion step or equality
expansion step that involves a suspicious initial clause.

Let S(0) be CEE3(S) and T(0) be T. We are going to construct a sequence
of clause sets and LPCT'-refutations such that the following statements will
hold for every i > 0:

– T(i) is a well-formed refutation of S(i) in LPCT';
– there are fewer different suspicious variables in T(i) than in T(i−1);
– any suspicious variable û occurs exactly twice in a clause from S(i): once in

a disequality of the form (p 6' û) and once in some other literal (but never
as the left argument of a (dis)-equality);

– any non-suspicious clause in S(i) belongs to CEE1(S).

Consider a lowermost suspicious inference I in T(i−1) (i.e. there are no sus-
picious steps under that one). Let û be a suspicious variable that comes into
the tableau with this step. The corresponding suspicious clause is of the form
(L[û] ∨ p 6' û ∨ C). Let S(i) be S(i−1) ∪ {L[p] ∨ C }.

Note that one of these two literals (containing an occurrence of û) may be
an “active literal” in I. This literal will not appear in T(i−1) in its original form.
Nevertheless, we can affirm that T(i−1) contains two disjoint subtrees, T◦ and
T•, such that the following holds:

– T◦ and T• are introduced at the step I;
– û does not occur outside of T◦ and T•;
– the root literal of T• is of the form s 6' û and û does not occur in s;
– moreover, û occurs in T• only in disequalities (t 6' û) and constraints (t = û)

introduced by a reduction step; û does not occur in these t (indeed, all we
can do with (t 6' û) is to reduce it or to paramodulate in t);

– û occurs exactly once in the root literal of T◦;
– û does not occur in the root node constraint of T◦.

Let T◦ have the form:

M [û] · δ
T1 · · · Tn

Below, Tk[û← t] denotes the tree Tk where all occurrences of û (both in literals
and constraints) are replaced with t. It is easy to see that this substitution does
not make Tk ill-formed, provided that û and t are equal with respect to the



CT'-Termination =⇒ LPCT-Paramodulation:

S ‖ Γ, f(x) 6' y, ∆, l ' u

⊥ · (f(x) = l � u = y)

=⇒ S ‖ Γ, f(x) 6' y, ∆, l ' u

w̄ 6' y · (f(x) = l � u = w̄)

⊥ · (w̄ = y)

CT'-Expansion =⇒ LPCT-Expansion:

S, (¬P (x) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, P (y)

⊥ · (x = y) L1 · · · Lk

=⇒

S, (¬P (x) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, P (y)

⊥ · (v̄ = y) x1 6' v̄1

⊥ · (x1 = v̄1)

· · · xn 6' v̄n

⊥ · (xn = v̄n)

L1 · · · Lk

CT'-Expansion =⇒ LPCT-EqualityExpansion:

S, (f(x) 6' y ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, l ' u

⊥ · (f(x) = l � u = y) L1 · · · Lk

=⇒

S, (f(x) 6' y ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, l ' u

w̄ 6' y · (f(v̄) = l � u = w̄)

⊥ · (w̄ = y)

x1 6' v̄1

⊥ · (x1 = v̄1)

· · · xn 6' v̄n

⊥ · (xn = v̄n)

L1 · · · Lk

S, (z ' u ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, f(x) 6' y

⊥ · (f(x) = z � u = y) L1 · · · Lk

=⇒

S, (z ' u ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, f(x) 6' y

w̄ 6' y · (f(x) = z � w̄)

⊥ · (w̄ = y)

u 6' w̄

⊥ · (u = w̄)

L1 · · · Lk

S, (f(z) ' u ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, f(x) 6' y

⊥ · (f(x) = f(z) � u = y) L1 · · · Lk

=⇒

S, (f(z) ' u ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, f(x) 6' y

w̄ 6' y · (f(x) = f(v̄) � w̄)

⊥ · (w̄ = y)

u 6' w̄

⊥ ·
(u = w̄)

z1 6' v̄1

⊥ ·
(z1 = v̄1)

· · · zn 6' v̄n

⊥ ·
(zn = v̄n)

L1 · · · Lk

Fig. 5. Transforming CT' to LPCT'



constraints in T(i−1). A tree transformation [T ]T
◦

is defined as follows:[
t 6' û · γ

⊥ · (t = û)

]T◦

=⇒ M [t] · γ

T1[û← t] · · · Tn[û← t][
t 6' û · γ

T1 · · · Tn

]T◦

=⇒ M [t] · γ

[T1]T
◦ · · · [Tn]T◦[

L · γ

T1 · · · Tn

]T◦

=⇒ L · γ

[T1]T
◦ · · · [Tn]T◦

Consider the tableau [T•]T◦ . We can affirm the following:

– The suspicious variable û does not occur in [T•]T◦ .
– Given that (s 6' û) is the root literal of T•, the literal M [s] is the root literal

of [T•]T◦ .
– Every paramodulation made in a literal of the form (t 6' û) in T• was made

in the term t. Therefore it can also be made in the corresponding literal M [t]
in [T•]T◦ .

– Every literal (t 6' û) reduced in T• becomes the literal M [t] in [T•]T◦ and is
extended further with the subtrees Ti[û ← t]. Since û and t are equal with
respect to the constraints of T(i−1), the tree [T•]T◦ is closed.

Then we add the constraint δ to the root node constraint of [T•]T◦ and replace
T◦ and T• in T(i−1) with that tree. Also, we replace S(i−1) with S(i) in the root.
The resulting well-formed closed LPCT'-tableau will be T(i).

In T(i), the step I is made with the clause L[p] ∨ C. Then we make all
paramodulations in p that were made in T• and proceed where needed with the
inferences that were made in T◦. The variable û disappeared from T(i) and no
other suspicious variables were introduced. It is not difficult to verify that other
required conditions are satisfied, too.

By repeating this procedure, we will eventually get a closed tableau T(N)

where suspicious variables do not occur at all. This tableau is, essentially, an
LPCT'-refutation of the set CEE1(S). It remains to undo the symmetry elim-
ination step. We replace the symbol ' with ≈ and reorient equalities to their
initial form in S.

Altogether, we obtain an LPCT-refutation of S. ut

Despite the way in which we prove completeness of the calculus, LPCT is not
just a reformulation of the CEE method. In fact, there is an essential difference
between flattening and lazy paramodulation. We said above that variables with
caret introduced in CEE-clauses can be considered as “values” of the terms they
replace. That is, the term that is finally substituted for a variable û, in fact, is the
result of all paramodulations made under and in the term t which was replaced
with û by CEE. Therefore, in a given CEE-clause, each term has exactly one
“value”. It is not the case for LPCT.

Let S be the set {x ≈ c ∨ x ≈ g(h(x)), f(c) ≈ d, f(g(z)) ≈ d, f(a) 6≈ d }.
The following tableau built in a simplified version of LPCT cannot be obtained



from any CT'-refutation of CEE(S).

S
f(a) 6≈ d

x ≈ c

f(c) 6≈ d

f(c) ≈ d

d 6≈ d

⊥
f(c) 6≈ f(c)

⊥

x 6≈ a

⊥ · (x = a)

x ≈ g(h(x))

f(g(h(x))) 6≈ d

f(g(z)) ≈ d

d 6≈ d

⊥
f(g(z)) 6≈ f(g(h(x)))

⊥ · (z = h(x))

x 6≈ a

⊥ · (x = a)

Here, we replace the constant a in the starting clause with two different terms,
c and g(h(x)). If we make inferences with CEE-clauses, we should take two
different instances of the starting clause. Based on this example, one can show
that LPCT can give an exponential shortening of the minimal inference size as
compared with CT' (but at the same time the number of possible inferences
increases).

Another noteworthy point is the weakness of unification. The lazy unification
procedure used in LPCT which matches top functional symbols immediately
and postpones the rest is the one proposed for lazy paramodulation in [13].
This form of unification is much weaker than top unification (introduced in
[17] and used in [14]) which descends down to variables. Top unification allows
us to restrict drastically the weight of postponed “unification obligations”. In
particular, top unifiability of two ground terms is decided immediately.

Unfortunately, top unification and ordering constraints cannot be used to-
gether in the framework of connection tableaux. Consider the ordering a > b > c
and the set S = {P (c)∨Q(c),¬P (a),¬Q(b), b ≈ c, a ≈ c }. Ordering constraints
prohibit paramodulations into c. The only way to refute S in LPCT is to resolve
P (c) with ¬P (a) or Q(c) with ¬Q(b). However, these pairs are not top unifiable.

It is unclear whether ordered inferences for a stronger kind of lazy unification
is a good trade-off. The author is not aware about any adaptation of connection
tableaux for lazy paramodulation with top unification. One of the directions for
further research is to develop and study one.

5 Conclusion

We have presented a new connection tableau calculus for first-order clausal logic
with equality. This calculus employs lazy paramodulation with ordering con-
straints and a restricted form of basicness. The refutational completeness of the
calculus is demonstrated by transforming proofs given by the (almost) tradi-
tional connection tableau calculus applied to a set of flattened clauses (in the
spirit of Brand’s modification method). Thus a connection is established between
lazy paramodulation and equality elimination via problem transformation.

For the future, we plan to investigate the compatibility of the proposed calcu-
lus with various refinements of connection tableaux; first of all, with the regular-
ity restriction. Unfortunately, the existing completeness proof is not well-suited



for this task, some semantic argument would be useful here. It is also interesting
to study more restricted forms of laziness, probably, giving up orderings and
basicness.

Finally, we hope to implement the proposed calculus and compare it in prac-
tice with other methods of equality handling in tableau calculi.
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