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Abstract. In this paper, we study translation from a first-order logic
with polymorphic types à la ML (of which we give a formal description) to
a many-sorted or one-sorted logic as accepted by mainstream automated
theorem provers. We consider a three-stage scheme where the last stage
eliminates polymorphic types while adding the necessary “annotations”
to preserve soundness, and the first two stages serve to protect certain
terms so that they can keep their original unannotated form. This pro-
tection allows us to make use of provers’ built-in theories and operations.
We present two existing translation procedures as sound and complete
instances of this generic scheme. Our formulation generalizes over the
previous ones by allowing us to protect terms of arbitrary monomorphic
types. In particular, we can benefit from the built-in theory of arrays
in SMT solvers such as Z3, CVC3, and Yices. The proposed methods
are implemented in the Why3 tool and we compare their performance in
combination with several automated provers.

1 Introduction

Polymorphic types are a means of abstraction over families of different types;
a polymorphic definition or proposition stands for a potentially infinite number
of its type-specific instances. Type systems employing polymorphism arise natu-
rally in programming languages and they are a prominent feature of interactive
proof assistants such as Coq [17] or Isabelle/HOL [16].

However, a proof task written in a language with polymorphic types is today
a difficult subject for automation. This is not because polymorphism handling
in a prover is complicated or inefficient per se. As was demonstrated by the Alt-
Ergo project [3], this only requires a straightforward extension of the unification
procedure and does not impose any significant overhead. The fact is, advanced
type systems have not yet become mainstream in automated deduction: SMT
solvers use many-sorted languages such as SMT-LIB [1], and TPTP provers are
content with one-sorted first-order language. Thus, to apply a mainstream prover
to a problem expressed in a polymorphic language, we have to translate it into
an equivalent monomorphic or even one-sorted problem.

The challenge is not new and a number of solutions is known, ranging from
adding per-variable “type guards” (also known as “relativisation of quantifiers”,
see [12] and [11, Sect. 3.0]), to throughout decoration of terms with their types



[9, 6], to various flavours of type erasure [10, 14, 11]. The latter method is logically
unsound, though adding type annotations can prevent certain unsound inference
steps (see [14, Sect. 2.5,2.6] and [11, Sect. 3.1]).

An important feature of a polymorphism encoding method is special treat-
ment of types and operations that are directly handled by provers’ built-in deci-
sion procedures, e.g., for linear arithmetic or bit-vectors. The idea is to prevent
the terms that can be interpreted by a prover from being modified by transla-
tion, to preserve their original form [6, 11]. In what follows, we call this “type
protection” to emphasize that we are interested in terms of particular types.

In this work, we aim to lift (or at least work around) several limitations we
perceive in the previous approaches. Firstly, the existing type protection tech-
niques only handle “simple” types, like integers or booleans, but not instances of
polymorphic types, like lists of integers or arrays of reals. Yet decision procedures
for such “complex” types are implemented in some SMT solvers; for example,
Z3 [15], CVC3 [2], and Yices [7] have a built-in support for arrays. Secondly,
type protection, as defined in [6], cannot be used to protect finite types such as
booleans: given an axiom “every boolean is equal either to ‘true’ or to ‘false’”, one
can derive that there are only two values in any encoded type, which can easily
lead to a contradiction. Thirdly, while translation by type erasure with addition
of type arguments to polymorphic symbols [11, Sect. 3.1] is less intrusive and
more efficient than full term decoration [6], the former method is unsound and,
according to [11], is only applicable in combination with provers that use trigger-
based rather than unification-based instantiation. Such a requirement excludes
the superposition-based provers and may be difficult to test when a third-party
prover is used.

We begin with a formal presentation of first-order logic with polymorphic
types (Section 2). In particular, we show that complete monomorphisation is
undecidable, that is, we cannot effectively compute a finite set of monomorphic
instances of a polymorphic formula F that is equisatisfiable to F . Then we
introduce a generic three-stage scheme of polymorphism encoding (Section 3).
In this scheme, we start by replacing interpreted polymorphic symbols (such as
operations of access and update in arrays) with selected monomorphic instances.
The translation proceeds then to type protection, which we consider as a separate
transformation, and concludes with polymorphism elimination proper.

We present a sound and complete method of type instantiation with symbol
discrimination for the first stage (Section 3.1). Furthermore, we give a general-
ized formulation of the type protection method from [6], free from the aforesaid
restrictions (Section 3.2). As third-stage transformations, we consider full term
decoration from [9, 6] (Section 3.3) and type erasure with added type annota-
tions from [11, Sect. 3.1] (Section 3.4). We show the latter method to be sound
on problems that admit models with infinite domains for every non-protected
type and we discuss how this condition can be handled in practice.

We conclude by comparing the described techniques in combination with the
SMT solvers Z3, CVC3, and Yices [7] on a set of about 4100 proof obligations
in the Why3 tool [4] (Section 4).



2 First-Order Logic With Polymorphic Types

The logic FOLT, presented below, is an extension of classical first-order many-
sorted logic. In FOLT, types are built from type constants (such as “integer”),
type functions (such as “list of”), and type variables that stand for arbitrary
monomorphic types. We do not admit quantifiers over type variables, neither
in types, nor in formulas: a polymorphic formula is rather seen as a scheme,
a potentially infinite conjunction of its monomorphic type instances. In other
words, every type variable that occurs in a formula is bound by an implicit prenex
universal quantifier. Basically, we use type polymorphism as a convenient way
to write a set of polymorphic axioms — say, for lists or arrays — once, instead
of copying them for every particular instance of these types.

The principal purpose of FOLT is to help specify and prove programs and
its type system can be seen as the first-order fragment of the ML type system.
The Why3 verification tool [4] is based upon FOLT with some extensions such
as algebraic types. The papers [6] and [11] work in a similar setting, though the
latter employs explicit quantifiers over type variables in logic formulas.

Syntax. We define types as syntactical expressions built from type constructors
of fixed arity (denoted with capital sans-serif letters) and type variables (denoted
α, β, γ). For example, β, I, F(I, γ) are well-formed types. Type constructors of
arity 0 are called type constants. A type that contains no type variables is called
monomorphic type or sort. A vector of types 〈T1, . . . , Tn〉 is called type signature.

A type substitution is a mapping from type variables to types. Amonomorphic
type substitution maps every type variable either to itself or to a sort. A type
T is said to match another type T ′ whenever there is a type substitution that
instantiates T to T ′. This notion is trivially extended to type signatures.

We use letters S and T for types, boldface letters S, T for type signatures,
and Greek letters τ , θ, and π for type substitutions. We denote the set of available
type variables with VT, the set of type constructors with FT, the set of all types
built from VT and FT with T (FT,VT), and the set of all sorts with T (FT). We
presume that VT is infinite and FT contains at least one type constant.

We use traditional first-order terms and formulas, built from variable sym-
bols (denoted u, v, w), function symbols (denoted f, g, h), and predicate symbols
(denoted p, q), with the following additions:

– Every term carries an explicit type, e.g.: w : C(I), f(u :α, v : L(α)) : L(α). We
denote terms with letters s and t, and, by abuse of notation, we sometimes
write the type of a term to the right of the letter: s :T1, t :T2, and so on.

– A variable is a variable symbol with a type, and we treat w : C(I) and w : C(α)
as two distinct variables even though they share the same variable symbol.

– To each function symbol of arity n we assign a type signature of length n+1.
A term of the form f(t1 :T1, . . . , tn :Tn) :T is well-formed if and only if the
type signature of f matches 〈T1, . . . , Tn, T 〉.

– To each predicate symbol of arity n we give a type signature of length n. An
atomic formula of the form p(t1 :T1, . . . , tn :Tn) is well-formed if and only if
the type signature of p matches 〈T1, . . . , Tn〉.



– An atomic equality formula of the form t1 ≈ t2 is well-formed if and only if
the terms t1, t2 have the same type.

– Quantifiers bind variables, i.e., typed variable symbols: ∀(u :α) p(u :α, u : C).
Here, the first argument of p is bound, but the second one is free.

We treat equality (≈), negation (¬), conjunction (∧), and the universal quan-
tifier (∀) as logical symbols and we treat disjunction (∨), implication (⊃), equiv-
alence (≡), disequality (6≈), and the existential quantifier (∃) as abbreviations.

We use letters x, y, z for variables, letters F,G,H for formulas, and Greek
letters Γ,∆ for sets of formulas. We denote the (infinite) set of variable symbols
with V, the set of function symbols with F, and the set of predicate symbols
with P. Given a term or a formula e, the set of type variables occurring in e is
denoted FVT(e) and the set of free variables of e is denoted FV(e). If FVT(e) is
empty, we call e monomorphic. If FV(e) is empty, we call e closed or ground.

Substitutions, denoted with letters σ and δ, apply to a term or a formula e,
replacing free variables with terms of the same type (denoted eσ). The symbol
◦ denotes the composition of two (type) substitutions: x(σ ◦ δ) , xσδ.

Type substitutions apply only to closed formulas and ground terms; also, we
require type instantiation to rename every bound variable symbol to some fresh
variable symbol. In this way, we avoid variable collisions: for example, the type
substitution [I/α] would not instantiate the formula ∀(u :α)∀(u : I) p(u :α, u : I) to
∀(u : I)∀(u : I) p(u : I, u : I), but to ∀(u′ : I)∀(u′′ : I) p(u′ : I, u′′ : I). In our subsequent
examples, we will not use a variable symbol in two different variables in the same
formula to avoid confusion.

In what follows, we illustrate our transformations on the following simple
polymorphic formula (for the sake of readability, we omit the most obvious type
annotations): ∀(m : M(α, I))∀(c :α) get(set(m, c, 6) : M(α, I), c) : I ∗ 7 ≈ 42. Here,
the type I represents integers and the type M(α, β) is that of polymorphic α-to-β
maps. The function symbol get is of type signature 〈M(α, β), α, β〉 and set is
of type signature 〈M(α, β), α, β,M(α, β)〉.

Satisfiability. Given sets FT, F, P, an interpretation I is defined by three maps:

– to each sort S ∈ T (FT), we assign a non-empty domain DI
S ;

– to each symbol f ∈ F and each vector of sorts S = 〈S1, . . . , Sn, S〉 matched
by the type signature of f , we assign a function fIS :DI

S1
× · · · ×DI

Sn
→ DI

S ;
– to each symbol p ∈ P and each vector of sorts S = 〈S1, . . . , Sn〉 matched by

the type signature of p, we assign a function pIS :DI
S1
× · · · ×DI

Sn
→ {>,⊥},

where > and ⊥ stand for Boolean constants “true” and “false”, respectively.

We call type valuation a type substitution that instantiates every type vari-
able in VT to a sort. Given a type valuation π, we call variable valuation under π
a function that maps every variable u :T to some element of DI

Tπ. We simply say
variable valuation when the implied type valuation is known from the context
or in a purely monomorphic setting, where every type is already closed.

Let π be a type valuation and ξ be a variable valuation under π. We evaluate
terms and formulas according to the following equalities, where t : T stands for



a vector of terms t1 :T1, . . . , tn :Tn and ξ[u :T 7→ a] is a valuation that coincides
with ξ everywhere except u :T , which is mapped to a.

Iπ,ξ(u :T ) , ξ(u :T ) Iπ,ξ(t1 ≈ t2) , (Iπ,ξ(t1) = Iπ,ξ(t2))
Iπ,ξ(f(t : T)) :T ) , fI〈T,T 〉π(Iπ,ξ(t)) Iπ,ξ(¬F ) , ¬ Iπ,ξ(F )

Iπ,ξ(p(t : T)) , pITπ(Iπ,ξ(t)) Iπ,ξ(F ∧G) , Iπ,ξ(F ) ∧ Iπ,ξ(G)

Iπ,ξ(∀(u :T )F ) ,
∧

a∈DI
Tπ

Iπ,ξ[u :T 7→ a](F )

It is easy to see that evaluation of a term or a formula e under Iπ,ξ does
not depend on the values of π and ξ on (type) variables that do not occur in e.
In what follows, when we evaluate closed or monomorphic expressions, we often
omit the variable valuation or the type valuation, respectively.

Lemma 1. For any closed formula F and type valuation π, Iπ(F ) = I(Fπ).

As we said above, we treat type variables as implicitly universally quantified
at the top of a polymorphic formula. Thus, a closed formula F is satisfied by
I if and only if Iπ(F ) is true for every type valuation π. A closed formula is
satisfiable if and only if it is satisfied by some interpretation, called a model of
this formula. These definitions are trivially extended to sets of closed formulas.
To prove a polymorphic formula G in a polymorphic context Γ , we take a type
substitution τ that replaces all type variables in G with fresh type constants
and show that the set Γ,¬Gτ is unsatisfiable. Generally speaking, the semantics
of polymorphic formulas in FOLT is quite similar to that of first-order clauses,
where the free variables are also implicitly universally quantified.

On monomorphic terms and formulas, our definitions correspond to the tra-
ditional many-sorted logic with disjoint sorts. Moreover, a trivial corollary of
Lemma 1 is that F is satisfiable if and only if the set of all monomorphic type
instances of F is satisfiable.

Computing monomorphic instances? A polymorphic formula can have infinitely
many monomorphic type instances. But can’t we find out, in finite time, all sorts
that are potentially relevant to the problem and deal with a finite subset of in-
stances, produced just with these sorts? On one hand, this resembles an attempt
to pre-compute the relevant ground instances in a set of first-order formulas —
a problem well known to be undecidable. On the other hand, type handling does
not need to be as hard as proof search in general, and complete monomorphisa-
tion is often possible in programming languages (e.g., C++ templates).

Theorem 1. There is no computable function that maps an arbitrary closed
formula F to an equisatisfiable finite set of monomorphic type instances of F
(notice that such a set always exists by compactness).
Proof. It turns out that our type system is expressive enough to encode an
undecidable theory, namely, combinatory logic. Consider the following signature:

FT = { A(·, ·), S, K } F = { A : 〈α, β,A(α, β)〉, S : 〈S〉, K : 〈K〉 } P = { R : 〈α, β〉 }



along with five axioms (for brevity, we omit some type annotations):

∀(u :α)∀(v :β)∀(w : γ) ((R(u, v) ∧ R(v, w)) ⊃ R(u,w))

∀(u :α)∀(v :β)∀(w : γ) (R(u, v) ⊃ R(A(u,w) : A(α, γ), A(v, w) : A(β, γ)))

∀(u :α)∀(v :β)∀(w : γ) (R(u, v) ⊃ R(A(w, u) : A(γ, α), A(w, v) : A(γ, β)))

∀(u :α)∀(v :β) R(A(A(K, u), v) : A(A(K, α), β), u :α)

∀(u :α)∀(v :β)∀(w : γ) R(A(A(A(S, u), v), w) : A(A(A(S, α), β), γ),

A(A(u,w), A(v, w)) : A(A(α, γ),A(β, γ)))

Here the binary function symbol A stands for term application, and the binary
predicate symbol R for CL-reducibility. Notice that every ground combinatory
term is reflected in its type.

Now, if we were able to compute a finite set of potentially relevant closed
types for an arbitrary reducibility problem in this theory, this would readily
let us decide the problem itself, as we would thus obtain the set of potentially
relevant ground terms. Since ground reducibility in CL is undecidable, complete
monomorphisation in FOLT is undecidable, too. ut

3 Eliminating Polymorphic Types

Being unable to select just a relevant monomorphic subset of a polymorphic
problem, we have to resort to some form of encoding, converting the polymor-
phic problem to an equisatisfiable monomorphic one. Such conversion inevitably
implies merging many types into few sorts or just a single sort. This is undesirable
if we target an automated prover equipped with special techniques (decision pro-
cedures, unification modulo, etc.) for particular types, such as integers, booleans
or arrays. These types ought to be separated from the rest, protected against
this “type fusion”, expelled from polymorphism in the problem.

To this purpose, we slightly extend our language in order to be able to select
the terms that will keep their (monomorphic) type through polymorphism elimi-
nation. To every sort S in T (FT) we associate a new protected sort S̄. The use of
protected sorts is restricted: a protected sort can appear in the type signature of
a symbol or as a type of a term, but it cannot occur under a type constructor or
in the range of a type substitution. In other words, the only type that matches
a protected sort S̄ is S̄ itself.

For example, get(v : M(I, I), c : I) : I is a malformed term, since the type signa-
ture of get is 〈M(α, β), α, β〉 and M(α, β) does not match M(I, I). Similarly, the
term get(v : M(I, Ī), c : I) : Ī is malformed, because β does not match Ī and also
because M(I, Ī) is a malformed type expression. However, if we consider a “pro-
tected specialization” of get, denoted get, with the type signature 〈M(I, I), Ī, Ī〉,
the application get(v : M(I, I), c : Ī) : Ī is a well-formed term.



Concerning interpretation, every protected sort S̄ has its proper non-empty
domain DI

S
. As with any type substitution, we restrict type valuations to non-

protected sorts. Thus, a set {∀(u :α)∀(v :α)u ≈ v, ∃(a : Ī)∃(b : Ī) a 6≈ b} is satis-
fiable. Indeed, the first formula requires the domain of every non-protected sort
to be a singleton, but does not constrain the domains of protected sorts.

Using protected sorts, we can define a general three-stage scheme of encoding
of polymorphic formulas, explained below from the end to the beginning.

The final, “type-fusing” stage takes a set of polymorphic formulas with pro-
tected sorts and converts it into an equisatisfiable set of monomorphic formulas.
A common requirement to the methods on this stage is preservation of terms with
protected types: monomorphic protected fragments of the problem, e.g., arith-
metic expressions, must be sent to a prover as is. We present two “type-fusing”
transformations, Dec and Exp, in Sections 3.3 and 3.4. Both methods have been
previously described in the literature [9, 10, 14, 6, 11]. Our presentation is more
general in that it permits to protect arbitrarily complex monomorphic types,
such as “list of integers” or “integer-to-real map”. The ability to preserve such
sorts is of more than purely theoretical interest: as we have already mentioned,
Z3, CVC3, and Yices provide built-in support for access and update operations
on integer-indexed arrays.

The intermediate, “type-protecting” stage takes a set of polymorphic formu-
las without protected sorts and converts it into an equisatisfiable set of formulas
with protection. The methods on this stage take as a parameter the set of sorts
that we wish to protect; we expect them to put protection over every occur-
rence of every sort from this set in the problem. We present a type-protecting
transformation called Tw in Section 3.2. This method was introduced in [6]; we
generalize it to complex sorts.

The first stage can be figuratively called “type-revealing”. Even if our type-
protecting and type-fusing transformations are not limited to sort constants and
can protect arbitrarily complex sorts, say, arrays of integers, we cannot readily
benefit from this capacity. In an initial FOLT-problem, arrays are most probably
formalized as a polymorphic type, with premises that apply to arrays of any
type and with polymorphic function symbols for access and update. In order to
produce interpreted monomorphic operations for Z3, CVC3, or Yices in the end,
we must start by replacing, wherever possible, these function symbols with their
monomorphic specializations. This is the purpose of the Dis transformation,
presented in Section 3.1. We show in Section 4 that this “type revealing” brings
a considerable improvement to provers’ results.

To fit the page limit, we omit the proofs of our theorems. The reader is
referred to the extended technical report [5].

3.1 Symbol Discrimination

The Dis transformation involves producing a sufficient number of type instances
of formulas in an initial problem Γ with subsequent discrimination of function
and predicate symbols.



Let f be a function symbol of type signature S in the initial problem Γ . Let τ
be a type substitution in the type variables of S. A fresh function symbol fτ with
the type signature Sτ is called a specialization of f . We call fτ a monomorphic
specialization if Sτ is monomorphic. Specializations of predicate symbols are
defined in the same way.

Let W be a set of monomorphic specializations of function and predicate
symbols in Γ . These are the instances that we want to “reveal” in the problem.
The setW is fixed for the rest of this section; the Dis transformation is implicitly
parametrized by it.

First of all, the Dis transformation modifies the signature of Γ :

1. For every variable symbol u and type T , we add a new variable symbol uT .
2. We add every function and predicate symbol from W .

Given an arbitrary type substitution θ, the discriminating transformation
Disθ instantiates and converts terms and formulas into the new signature:

1. Given a variable u :T , Disθ(u :T ) , uT :Tθ.
2. Consider a term t = f(t1 :T1, . . . , tn :Tn) :T . Let τ be the type substitution

that instantiates the type signature of the symbol f to 〈T1θ, . . . , Tnθ, Tθ〉. If
fτ belongs to W , then Disθ(t) , fτ (Disθ(t1) :T1θ, . . . ,Disθ(tn) :Tnθ) :Tθ.
Otherwise, Disθ(t) , f(Disθ(t1) :T1θ, . . . ,Disθ(tn) :Tnθ) :Tθ.

3. Consider an atomic formula F = p(t1 :T1, . . . , tn :Tn). Let τ be the type
substitution that instantiates the type signature of p to 〈T1θ, . . . , Tnθ〉. If pτ
is in W , then Disθ(F ) , pτ (Disθ(t1) :T1θ, . . . ,Disθ(tn) :Tnθ). Otherwise,
Disθ(F ) , p(Disθ(t1) :T1θ, . . . ,Disθ(tn) :Tnθ).

Equalities and complex formulas are converted in a natural way:

Disθ(t1 ≈ t2) , Disθ(t1) ≈ Disθ(t2) Disθ(F ∧G) , Disθ(F ) ∧Disθ(G)
Disθ(¬F ) , ¬Disθ(F ) Disθ(∀xF ) , ∀(Disθ(x)) Disθ(F )

Now, let F be a closed formula. The set of monomorphic type substitutions
Θ(F ) is defined as follows:

Θ(F ) , { θ | F contains a term f(t1 :T1, . . . , tn :Tn) :T such that
θ only instantiates the variables of T = 〈T1, . . . , Tn, T 〉 and
W contains a specialization of f with the type signature Tθ }

∪ { θ | F contains an atomic formula p(t1 :T1, . . . , tn :Tn) such that
θ only instantiates the variables of T = 〈T1, . . . , Tn〉 and
W contains a specialization of p with the type signature Tθ }

We call two monomorphic type substitutions compatible if they do not substi-
tute two different sorts for the same type variable. The union of two compatible
monomorphic type substitutions is their composition (the order is irrelevant).
We define Θ?(F ) as the closure of Θ(F ) with respect to finite unions of com-
patible type substitutions. The empty union, i.e., the identity type substitution,
also belongs to Θ?(F ).



Finally, Dis translates a closed formula F into a set of formulas:

Dis(F ) , {Disθ(F ) | θ ∈ Θ?(F ) }

On our running example, assuming W = {get[I/α,I/β], set[I/α,I/β]}, Dis pro-
duces the following two formulas:

∀(mM(α,I) : M(α, I))∀(cα :α) get(set(mM(α,I), cα, 6), cα) ∗ 7 ≈ 42

∀(mM(α,I) : M(I, I))∀(cα : I) get[I/α,I/β](set[I/α,I/β](mM(α,I), cα, 6), cα) ∗ 7 ≈ 42

The new symbol get[I/α,I/β] has the monomorphic type signature 〈M(I, I), I, I〉.

Lemma 2. Let θ be a type substitution, t a term of type T , and F a formula.
Then Disθ(t) is a well-formed term of type Tθ and Disθ(F ) is a well-formed
formula such that FV(Disθ(F )) = {Disθ(x) |x ∈ FV(F )} and FVT(Disθ(F )) =
FVT(F )\dom(θ).

Theorem 2. A set of closed formulas Γ is equisatisfiable to Dis(Γ ).

The definition of Dis can be generalized to a case where W admits polymor-
phic specializations. This requires W to be closed with respect to unification
of type signatures, so that we can always choose the most refined specializa-
tion symbol during discrimination. The substitutions in the set Θ(F ) must be
considered modulo renaming of type variables in the signatures of specialization
symbols. Finally, the union of two substitutions would be their most general
common refinement. However, since our transformations target monomorphic
theorem provers, we find this generalization of lesser practical interest and do
not pursue it in this paper.

3.2 Twin Sorts

The Tw transformation converts a set of formulas into an equisatisfiable set
with protected sorts. It applies a pair of conversion functions to pass, wherever
necessary, from a protected sort to a non-protected one and vice versa.

Let U be a set of sorts that we want to preserve across our type-eliminating
transformations. The set U is fixed for the rest of the section and the Tw trans-
formation is parametrized by it. Given a type T , the transformed type [T ] is T
if T ∈ U , and T otherwise. Then Tw modifies the signature of a transformed
theory as follows:

1. We replace every function symbol f of type signature 〈S1, . . . , Sn, S〉 with a
symbol f̄ of type signature 〈[S1], . . . , [Sn], [S]〉.

2. We replace every predicate symbol p of type signature 〈S1, . . . , Sn〉 with a
symbol p̄ of type signature 〈[S1], . . . , [Sn]〉.

3. For every sort T ∈ U , we add a pair of “bridge” function symbols toT : 〈T , T 〉
and fromT : 〈T, T 〉.



Then we convert terms and atomic formulas into the new signature. Our aim
is to forbid a polymorphic type in a symbol’s type signature being instantiated
into a type from U . Whenever such instantiation takes place, a bridge function
is applied. In more precise terms:

1. Given a variable u :T , Tw(u :T ) , u :[T ].
2. Consider a term t = f(t1 :T1, . . . , tn :Tn) :T and let 〈S1, . . . , Sn, S〉 be the

type signature of f .

For every ti, t′i ,

{
toTi(Tw(ti)) :Ti if Ti ∈ U and Si /∈ U,
Tw(ti) if Ti /∈ U or Si ∈ U.

Then Tw(t) ,

{
f̄(t′1, . . . , t′n) :[T ] if T /∈ U or S ∈ U,
fromT (f̄(t′1, . . . , t′n) :T ) :T if T ∈ U and S /∈ U.

3. Consider a formula p(t1 :T1, . . . , tn :Tn) and let 〈S1, . . . , Sn〉 be the type
signature of p. For every argument ti, we define t′i as in the previous case.
Then, Tw(p(t1 :T1, . . . , tn :Tn)) , p̄(t′1, . . . , t′n).

Equalities and complex formulas are converted in a natural way:

Tw(t1 ≈ t2) , Tw(t1) ≈ Tw(t2) Tw(F ∧G) , Tw(F ) ∧Tw(G)
Tw(¬F ) , ¬Tw(F ) Tw(∀xF ) , ∀(Tw(x)) Tw(F )

Finally, we convert the formulas in Γ and add axioms for the bridge functions:

Tw(Γ ) , {Tw(F ) |F ∈ Γ }
∪ { ∀(v :T ) fromT (toT (v :T )) ≈ v :T | T ∈ U }
∪ { ∀(u :T ) toT (fromT (u :T )) ≈ u :T | T ∈ U }

Assuming U = {I}, the running example is transformed as follows. Notice
that 6, 7, and 42 have the type Ī and the type signature of ∗ is 〈̄I, Ī, Ī〉.

∀(m : M(α, I))∀(c :α) fromI(get(set(m, c, toI(6) : I), c) : I) ∗ 7 ≈ 42

Lemma 3. For every term t of type T , Tw(t) is a well-formed term of type [T ],
and for every formula F , Tw(F ) is a well-formed formula with the same free
variables (modulo conversion of their types) and type variables.

Theorem 3. A set of closed formulas Γ is equisatisfiable to Tw(Γ ).

3.3 Decorated Terms

The Dec transformation converts a polymorphic problem with protected sorts
into an equisatisfiable monomorphic problem. Roughly speaking, in order to
preserve type information, it decorates every term with its type, which itself is
transformed to a term of a special sort.



First of all, we introduce three fresh sort constants U, D, and T. The first
one is assigned to undecorated terms, the second one to decorated terms, and
the third one to the terms representing types. To transform the type signatures
of function and predicate symbols, we use the following operations on types:

[T ]− ,

{
T if T is protected,
D otherwise

[T ]+ ,

{
T if T is protected,
U otherwise

Now, the signature of the resulting theory is defined as follows:
1. The set of type constructors is extended with U, D, T.
2. We replace every function symbol f of type signature 〈S1, . . . , Sn, S〉 with a

symbol f̂ with the monomorphic type signature 〈[S1]−, . . . , [Sn]−, [S]+〉.
3. We replace every predicate symbol p of type signature 〈S1, . . . , Sn〉 with a

symbol p̂ with the monomorphic type signature 〈[S1]−, . . . , [Sn]−〉.
4. For every variable symbol u and type T , we add a new variable symbol uT .
5. For every type variable α ∈ VT, we add a new variable symbol vα.
6. For every type constructor F ∈ FT, we add a new function symbol F of the

same arity and with type signature 〈T, . . . ,T,T〉.
7. We add a new “decoration” function symbol deco :〈T,U,D〉.

The Dec transformation applies to non-protected types, translating them to
terms of type T:

Dec(α) , vα : T Dec(F(T1, . . . , Tn)) , F(Dec(T1), . . . ,Dec(Tn)) : T

In the next definition, t stands for a vector of terms, S̄ for a protected sort,
and T for a non-protected type. The Dec transformation applies to terms:

Dec(u : S̄) , uS : S̄
Dec(u :T ) , deco(Dec(T ), uT : U) : D

Dec(f(t) : S̄) , f̂(Dec(t)) : S̄
Dec(f(t) :T ) , deco(Dec(T ), f̂(Dec(t)) : U) : D

and formulas (here, {α1, . . . , αm} = FVT(H)):

Dec(p(t)) , p̂(Dec(t)) Dec(¬F ) , ¬Dec(F )
Dec(t1 ≈ t2) , Dec(t1) ≈ Dec(t2) Dec(∀(u : S̄)F ) , ∀(uS : S̄) Dec(F )
Dec(F ∧G) , Dec(F ) ∧Dec(G) Dec(∀(u :T )F ) , ∀(uT : U) Dec(F )

Dec◦(H) , ∀(vα1 : T) . . . ∀(vαm : T) Dec(H)
On the running example, assuming U = {I}, the transformations Tw and

Dec◦ produce the following monomorphic formula:

∀(vα : T)∀(mM(α,I) : U)∀(cα : U) fromI
(
deco

(
I, get(deco(M(vα, I),

set(deco(M(vα, I),mM(α,I)), deco(vα, cα), deco(I, toI(6)))),
deco(vα, cα))

))
∗ 7 ≈ 42



The second axiom of bridge functions toI and fromI becomes

∀(uI : U) deco(I, toI(fromI(deco(I, uI)))) ≈ deco(I, uI)

Due to the outer application of deco on the both sides of equality, our translation
is sound even when we protect finite types, such as booleans. Without this
additional decoration (as in [6, Eq. (8)]), the finiteness of a protected sort implies
the finiteness of the whole sort U.

Lemma 4. For every term t of type T , Dec(t) is a well-formed monomorphic
term of type [T ]−. For every formula F , Dec(F ) is a well-formed monomorphic
formula. Also, FV(Dec(t)) = {uT :[T ]+ |u :T ∈ FV(t)} ∪ {vα : T |α ∈ FVT(t)}
and FV(Dec(F )) = {uT :[T ]+ |u :T ∈ FV(F )} ∪ {vα : T |α ∈ FVT(F )}. For
every closed formula F , Dec◦(F ) is a well-formed closed monomorphic formula.

Theorem 4. A set of closed formulas with protected sorts Γ is satisfiable if and
only if Dec◦(Γ ) is satisfiable.

3.4 Explicit Polymorphism

The Exp transformation is similar to Dec except that instead of attaching an
explicit type annotation to every term, we add type-representing arguments to
polymorphic symbols. This allows for much lighter modifications in the original
problem. However, the method is only sound on problems that admit a model
where every non-protected sort has an infinite domain.

We introduce fresh sort constants U and T. The first one replaces non-
protected types and the second one, as in Dec, is the sort of type-representing
terms. For any type T , we define [T ] to be T if T is protected, and U otherwise.
Then Exp modifies the signature of a transformed theory in the following way:

1. The set of type constructors is extended with U and T.
2. Let f be a function symbol of signature S = 〈S1, . . . , Sn, S〉 and α1, . . . , αr

be the free type variables of S. We replace f with a function symbol f̂ of
arity r + n with monomorphic type signature 〈T, . . . ,T, [S1], . . . , [Sn], [S]〉.

3. Let p be a predicate symbol of signature S = 〈S1, . . . , Sn〉 and α1, . . . , αr be
the free type variables of S. We replace p with a predicate symbol p̂ of arity
r + n with monomorphic type signature 〈T, . . . ,T, [S1], . . . , [Sn]〉.

4. For every variable symbol u and type T , we add a new variable symbol uT .
5. For every type variable α ∈ VT, we add a new variable symbol vα.
6. For every type constructor F ∈ FT, we add a new function symbol F of the

same arity and with type signature 〈T, . . . ,T,T〉.

The Exp transformation applies to non-protected types, translating them to
terms of type T, exactly as Dec:

Exp(α) , vα : T Exp(F(T1, . . . , Tn)) , F(Exp(T1), . . . ,Exp(Tn)) : T



The Exp transformation applies to terms and formulas. In the definition
below, t stands for a list of terms; α1, . . . , αr are the type variables of the type
signature of f and p; the type signature of f and p is instantiated with a type
substitution τ ; and β1, . . . , βm are the type variables of H:

Exp(u :T ) , uT : [T ]
Exp(f(t) :T ) , f̂(Exp(α1τ), . . . ,Exp(αrτ),Exp(t)) :[T ]

Exp(p(t)) , p̂(Exp(α1τ), . . . ,Exp(αrτ),Exp(t))
Exp(t1 ≈ t2) , Exp(t1) ≈ Exp(t2)

Exp(¬F ) , ¬Exp(F )
Exp(F ∧G) , Exp(F ) ∧Exp(G)

Exp(∀xF ) , ∀(Exp(x)) Exp(F )
Exp◦(H) , ∀(vβ1 : T) . . . ∀(vβm : T) Exp(H)

On the running example, assuming U = {I}, the transformations Tw and
Exp◦ produce the following formula:

∀(vα : T)∀(mM(α,I) : U)∀(cα : U) fromI(get(vα, I,
set(vα, I,mM(α,I), cα, toI(6)), cα)) ∗ 7 ≈ 42

Lemma 5. For every term t of type T , Exp(t) is a well-formed monomorphic
term of type [T ]. For every formula F , Exp(F ) is a well-formed monomorphic
formula. Also, FV(Exp(t)) = {uT :[T ] |u :T ∈ FV(t)}∪{vα : T |α ∈ FVT(t)} and
FV(Exp(F )) = {uT :[T ] |u :T ∈ FV(F )} ∪ {vα : T |α ∈ FVT(F )}. Finally, for
every closed formula F , Exp◦(F ) is a well-formed closed monomorphic formula.

Theorem 5. Let Γ be a set of closed formulas with protected sorts. If Γ is satis-
fiable so that every non-protected sort has an infinite domain in the model, then
Exp◦(Γ ) is satisfiable. Conversely, if Exp◦(Γ ) is satisfiable then Γ is satisfiable.

From a practical point of view, the soundness part of Theorem 5 is not
comforting. Given a FOLT-problem Γ , we cannot effectively decide which sorts
admit infinite models and which do not (one can postulate a bijection between
a given sort and the domain of a partial-recursive function). A practical way
out could consist in a small language extension: for every type/sort, we specify
explicitly whether it is finite or infinite. We proceed from the assumption that
the author of any given problem knows the intended model of every type.

In Why3 [4], every type is declared either as abstract or algebraic (i.e., a sum
of products). We postulate that abstract types are all infinite and we analyse the
definitions of algebraic types to find out which of their monomorphic instances
admit infinite models. For example, given the standard algebraic definitions of
booleans (B), lists (L(α)), and pairs (P(α, β)), we can conclude that the sorts B
and P(B,B) are finite and I, L(B), and P(I,B) are infinite.

Once we know the finite sorts, can we transform a problem to eliminate them,
so that Exp (or a similar method) can be applied? Meng and Paulson propose



to filter out the premises implying the finiteness of sorts [14, Sect. 2.8]; however,
we need an infallible filter to ensure the soundness of type erasure. We have
implemented an alternative solution which consists in putting a special “projec-
tion” function projT over every variable and function symbol of a finite type T .
Thus, the premise ∀(x : B)(x ≈ True ∨ x ≈ False) becomes ∀(x : B)(projB(x) ≈
projB(True)∨projB(x) ≈ projB(False)) and the domain of B does not need to
be finite anymore, as we confine ourselves to the range of projB. This method
is still potentially unsound, as one can state the finiteness of a sort with a poly-
morphic axiom, where no projection would apply. Precisely, let isUnit :〈α〉 be
a unary predicate. Then the formulas ∀(x :α)(isUnit(x) ⊃ ∀(y :α)(y ≈ x)) and
∀(x : A) isUnit(x) imply that the sort A has a single inhabitant. Today, we know
of no way to use Exp soundly on polymorphic problems with finite sorts.

The last remark to make is that Exp provides a path towards one-sorted
languages. Indeed, in a monomorphic setting, Theorem 5 comes to: “if every sort
admits an infinite domain, then we can safely erase the sort annotations”. Thus, if
we want to use a TPTP prover such as Vampire or SPASS, we start by translating
a proof task to the many-sorted language, using any of the methods described
above. Then we eliminate the protected finite sorts (if any) using projections;
in absence of polymorphism, this is a sound and complete transformation. And
finally, we apply Exp assuming that all types are non-protected, which amounts
to simply erasing all sorts.

4 Experiments and Conclusion

In our experiments, we wanted to compare the impact of different “paths”
of polymorphism encoding on the performance of three well-established SMT
solvers. We add the classical type encoding technique with per-variable “type
guards” [12]. Our implementation of this method (denoted Grd below) closely
follows the description given in [11, Sect. 3.0].

We run our tests on 4123 verification conditions generated by the Why plat-
form from 166 programs, which originate from Caduceus [8], Jessie [13], or di-
rectly from Why. Translated tasks were sent to Z3, CVC3, and Yices with a
time limit of 60 seconds. On the whole, 3993 proof obligations were proved
by at least one prover. The initial Why3 files and our results are available at
http://why3.lri.fr/download/polyfol_encoding.tar.gz.

We have tested the encodings Tw+Dec, Tw+Exp, and Tw+Grd, both
with and without Dis. In the latter case, these methods correspond to what is
described in [6] and [11]; the set U of sorts to protect in Tw is set to contain
only integers and reals, which are natively supported by the three provers. In
presence of Dis, we put in the set W every monomorphic specialization that
occurs in the goal formula along with the specializations of access and update
operations on every monomorphic array type in the goal; we also protect every
sort in the goal (as well as integers and reals). This configuration of Dis and Tw
gives better results comparing to other configurations that we tried, e.g., collect
the specializations and the sorts to protect from the whole proof task.



Z3 (3809) Tw+Grd Tw+Exp Tw+Dec Dis+Tw+Grd Dis+Tw+Exp
Dis+Tw+Dec +203 −36 +20 −49 +66 −37 +18 −5 +26 −30
Dis+Tw+Exp +191 −20 +13 −38 +63 −30 +35 −18
Dis+Tw+Grd +195 −41 +11 −53 +59 −43

Tw+Dec +157 −19 +15 −73
Tw+Exp +211 −15

CVC3 (3756) Tw+Grd Tw+Exp Tw+Dec Dis+Tw+Grd Dis+Tw+Exp
Dis+Tw+Dec +269 −20 +0 −26 +84 −19 +66 −4 +0 −6
Dis+Tw+Exp +272 −17 +0 −20 +88 −17 +69 −1
Dis+Tw+Grd +204 −17 +1 −89 +46 −43

Tw+Dec +188 −4 +0 −91
Tw+Exp +275 −0

Yices (3717) Tw+Grd Tw+Exp Tw+Dec Dis+Tw+Grd Dis+Tw+Exp
Dis+Tw+Dec +882 −6 +13 −276 +379 −79 +204 −2 +3 −272
Dis+Tw+Exp +1149 −4 +39 −33 +574 −5 +472 −1
Dis+Tw+Grd +684 −10 +6 −471 +241 −143

Tw+Dec +577 −1 +5 −568
Tw+Exp +1140 −1

Our results are given in the table above. To the right of the prover’s name,
we put the number of goals proved by at least one encoding method. In every cell
we specify the number of goals proved by one encoding but not by the other one.
For example, with CVC3, the encoding by Dis+Tw+Dec allows us to prove 84
goals that were not proved by Tw+Dec. On the other hand, with Tw+Dec,
CVC3 proves 19 goals that were not proved with Dis+Tw+Dec.

On the average, symbol discrimination increases the number of premises by a
factor of 1.8 (ranging from 1 to 10 on some examples). Nevertheless, adding the
Dis phase allows us to prove more goals in every case except for Z3 and CVC3
with Exp. In particular, the Grd transformation is remarkably helped by Dis.
Apart from the possibility to use the built-in support for arrays, the effectiveness
of Dis is also explained by the fact that we protect the sorts that occur in
the selected monomorphic specializations. Thus, the new premises generated by
Dis are not only instantiated to the relevant sorts, they are also liberated from
decorations imposed by the third, type-fusing, stage. This effect is less important
in the case of Exp, because this transformation, unlike Dec and Grd, adds very
little clutter to the encoded formulas in the first place.

Also notice that type protection, Tw, is crucially important: if we protect no
types at all, we prevent provers from using their built-in theories, and the total
number of goals proved (using only Exp, Dec, or Grd) drops to 1861.

The comparison between Exp, Dec, and Grd shows that Exp is generally
more efficient than Dec which in its turn is more efficient than Grd. This is quite
different from the results given in [11], where Exp and Grd have roughly the
same performance. We have not yet identified whether this discrepancy comes
from the difference in our test cases or in our implementations.



Conclusion. In the present paper, we described first-order logic with polymor-
phic types and introduced generic notions to define and reason about practical
methods of polymorphism elimination. Using these notions, we generalized and
proved two translation techniques known from literature. We also proposed to
combine type protection with symbol discrimination. As our experiments show,
this improves the performance of automated proof search and allows us to use
built-in theories of complex types, such as arrays, in SMT solvers. One interest-
ing problem we would like to resolve in the future is protection of polymorphic
types, allowing to merge all monomorphic instances of a given complex type in
a single protected sort. We also believe that better heuristics to choose the sets
W and U can be devised, and further experiments are in order.
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