
System for Automated Deduction (SAD):
a tool for proof verification

Konstantin Verchinine1, Alexander Lyaletski2, and Andrei Paskevich3

1 Université Paris 12, IUT Sénart/Fontainebleau,
77300 Fontainebleau, France,
verko@capet.iut-fbleau.fr

2 Kyiv National Taras Shevchenko University, Faculty of Cybernetics,
03680 Kyiv, Ukraine,
lav@unicyb.kiev.ua

3 Université Paris 12, Laboratoire d’Algorithmique, Complexité et Logique,
94010 Créteil, France,

andrei@capet.iut-fbleau.fr

Abstract. In this paper, a proof assistant, called SAD, is presented.
SAD deals with mathematical texts that are formalized in the ForTheL
language (brief description of which is also given) and checks their cor-
rectness. We give a short description of SAD and a series of examples
that show what can be done with it. Note that abstract notion of cor-
rectness on which the implementation is based, can be formalized with
the help of a calculus (not presented here).

1 Introduction

The idea to use a formal language along with formal symbolic manipulations
to solve complex “common” problems, has a long history. We would remind
G.W. Leibniz’s writings (1685) and the pioneer paper of Hao Wang [1]. It is
worth noting how ambitious was the title of Wang’s article! Numerous attempts
to “mechanize” mathematics led to less ambitious and more realistic idea of
“computer aided” mathematics as well as to the notion of “proof assistant” —
a piece of software that is able to do complex deductions for you.

Mathematical text SAD deals with, is a complex object that contains ax-
ioms, definitions, theorems, and proofs of various kinds (by contradiction, by
induction, by case analysis, etc). The formal semantics of a text can be given
by packing the whole text in a single statement and transforming it to the cor-
responding logical formula (which we call the formula image of the text). Then
the text is declared correct whenever its formula image is deducible in the un-
derlying logic. This approach would be simple and theoretically transparent but
obviously impracticable. The SAD system implements a more intricate notion of
text correctness which is formalized with the help of a logical calculus and can
serve as a formal specification of a “correctness verifier” (SAD included).

The SAD project is the continuation of a project initiated by academician
V. Glushkov at the Institute for Cybernetics in Kiev more than 30 years ago



[2]. Its original title was “Evidence Algorithm”. Three main components had to
be developed: an inference engine (we call it prover below) that implements the
basic level of evidence, an extensible collection of tools (we call it reasoner) to
reinforce the basic engine, and a formal input language which must be close to
natural mathematical language and easy to use. Actually, a working version of
SAD is implemented [3–5] and available online at http://ea.unicyb.kiev.ua.

In a general setting, SAD may be positioned as a declarative style proof as-
sistant/verifier that accepts input texts written in the formal language ForTheL
[6, 5], uses an automated first-order prover as the basic inference engine and pos-
sesses an original reasoner. The closest to our approach is Mizar system [7] —
the oldest and most known proof assistant working with proofs of declarative
style.

2 ForTheL language

Like usual mathematical text, a ForTheL

Theorem.

proof.

proof.

end.

qed.

Lemma.

Definition.
preliminaries

Fig. 1. ForTheL text’s structure

text consists of definitions, axioms, hypothe-
ses, conjectures, proofs. ForTheL is a con-
trolled natural language: its syntax follows
the rules of English grammar. ForTheL sen-
tences are of three kinds: assumptions (“Let
S be a finite set.”, “Assume that m is
less than n.”), selections (“Take an even
prime number X.”), and affirmations (“If
p divides n-p then p divides n.”). Series
of transformations which convert a ForTheL
statement to its formula image determine the
semantics of the statement. For example, the
formula image of the statement “all closed
subsets of any compact set are compact”
is: ∀ A ((A is a set ∧ A is compact) ⊃ ∀ B
((B is a subset of A ∧ B is closed) ⊃ B
is compact)). Sentences, compound sections
and a ForTheL text itself are given formula images, too.

Affirmations and selections can be accompanied with a proof. ForTheL sup-
ports various proof schemes like proof by contradiction, by case analysis, and by
general induction. Proofs need not to be ultimately detailed: reasoning “steps”
can be as large as the deductive facilities of a verifier (e.g. SAD) can manage.
Consider for example an excerpt of a verified formalization of the Tarski’s fixed
point theorem:

Definition DefCLat. A complete lattice is a set S such that

every subset of S has an infimum in S and a supremum in S.

Definition DefIso. f is isotone iff for all x,y << Dom f

x <= y => f(x) <= f(y).



fortified
sentence

text
ForTheL

Moses Vampire

E Prover

SPASS

Otter

parser

proof task

evidence collector

ontological check

simplify

split prove

unfold

filter

sentence

verification manager

proof taskreasoner

SAD
ForTheLFOL

TPTP

prover

sequent

Fig. 2. Architecture of SAD

Theorem Tarski.

Let U be a complete lattice and f be an isotone function on U.

Let S be the set of fixed points of f. S is a complete lattice.

Proof.

Let T be a subset of S.

Let us show that T has a supremum in S.

Take P = { x << U | f(x) <= x and x is an upper bound of T in U }.

Take an infimum p of P in U.

f(p) is a lower bound of P in U and an upper bound of T in U.

Hence p is a fixed point of f and a supremum of T in S.

end.

Let us show that T has an infimum in S.

Take Q = { x << U | f(x) >= x and x is a lower bound of T in U }.

Take a supremum q of Q in U.

f(q) is an upper bound of Q in U and a lower bound of T in U.

Hence q is a fixed point of f and an infimum of T in S.

end.

qed.

3 System for Automated Deduction

The principal components of SAD are shown in Figure 2.

Parser accepts a ForTheL text, checks its syntactical correctness and converts
the text into a normalized form that will be convenient for further processing
(e.g. all synonyms are replaced with their canonical representatives).

Verification manager makes her round through the normalized text section by
section, checking the ontological and logical correctness. If a section (say, A) is a



sentence, then it is first sent to the evidence collector that accumulates so called
term properties for the term occurrences in the formula image of A.

Term properties are literals that tell us something important about a given
term occurrence. A literal (i.e. an atomic formula or its negation) L is considered
to be a property of a term t in a context Γ , whenever t is a subterm of L and
L is deducible in Γ . The most important purpose of term properties is to hold
information about term “types”, which is usually expressed by an atomic state-
ment of the form “t is a 〈class〉”. Some simple properties, like non-emptiness,
are highly useful, too.

Fortified with the found properties, occurrences of terms and atoms are
passed to the ontological checker. For each symbol occurrence, the checker looks
through the text processed so far for an appropriate definition or signature ex-
tension. The deductive core of the system, so called reasoner, is used to prove
the instantiated guards. The results of ontological checking (the applicable defi-
nitions) together with the collected properties are used in evidence collection for
outer occurrences.

Then the verification manager processes the section A according to the rules
of the special Calculus of Text Correctness, CTC, which we do not describe in
this paper. Generally, if A contains a statement to prove, then a new verification
cycle is started to verify the submitted proof, possibly empty. This statement
becomes the initial thesis of the new cycle. The thesis may be gradually simplified
as the proof proceeds: when the thesis is an implication and we assume its
antecedent, or when it is a conjunction and we affirm its part. At the end of
the proof (i.e. immediately, if there was no proof in the text), the current thesis
is sent to the reasoner. In other words, a ForTheL proof hints the verification
manager to split the statement being proved into several proof tasks and the
rules of thesis transformation guarantee the soundness of splitting.

Reasoner deals with proof tasks of the form Γ ` F . This module can be viewed as
a kind of automated heuristic based prover, supplied with a collection of proof
task transformation rules. This collection is not intended to form a complete
logic calculus. The purpose of the reasoner is not to find the entire proof on its
own, but rather to simplify inference search for the background prover.

At present, the capabilities of the reasoner are as follows: propositional goal
splitting, formula simplification with respect to accumulated term properties,
simple filtering of premises according to explicit references in the text, incre-
mental definition expansion.

The reasoner of SAD uses term properties to simplify goal formulas and
formulas which arise from definition expansion: any literal that appears to hold
as a property of some of its subterms can be replaced by logical constant “truth”
(indeed, it can be deduced from the current context and, hence, is redundant).
Similarly, a literal can be replaced by “false”, if its complement occurs among
the properties of its subterms.

Background prover is a combinatorial automated prover in classical first-order
logic, whose duty is to complete the proofs started by the reasoner. If the back-



ground prover fails to find the inference at some instant, the reasoner may con-
tinue the proof task transformation or try an alternative way, or reject the text.

The background prover is independent from SAD by design, so that an ex-
ternal theorem prover can be used. Our experiments (see below) were performed
with Otter [8], SPASS [9], Vampire [10], and E [11]. Note that this feature of SAD
provides us with a (yet another) scale to compare automated theorem provers:
trying them on relatively simple problems in complex and heavily redundant con-
texts rather than on hard problems with a pre-adjusted set of relevant premises
(mostly the case for problems in the famous TPTP library [12]).

Also there exists the native background prover of SAD, called Moses. It is
based on an original goal-driven sequent calculus [4, 5].

4 Experiments

In the course of development of SAD, we have conducted a number of essays on
formalization and verification of non-trivial mathematical results:

– Ramsey’s Finite and Infinite theorems.
– Stability of a refinement relation over a number of operations on program

specifications [13].
– Cauchy-Bouniakowsky-Schwarz inequality.
– The square root of a prime number is irrational: 30 statements in prelim-

inaries (integer numbers), 5 definitions, 7 lemmas, about 50 sentences in
the proof of the main lemma (any prime dividing a product divides one of
the factors), 10 sentences in the proof of the theorem (see [5] for detailed
explanation of this experiment).

– Chinese remainder theorem and Bezout’s identity in terms of abstract rings:
25 statements in preliminaries (ring axioms, operations on sets), 7 definitions
(ideal, principal ideal, greatest common divisor, etc), 3 lemmas, 8 sentences
in the proof of CRT, about 30 sentences in the proof of Bezout’s identity.

– Tarski’s fixed point theorem (cited above): 11 statements in preliminaries
(ordered sets), 7 definitions (upper and lower bounds, supremum, infimum,
complete lattice, isotone function, fixed point), 2 lemmas, 18 sentences in
the proof of the theorem.

The texts listed above were written in ForTheL and automatically verified
in SAD using different background provers. The best results were obtained with
SPASS. This is due, in particular, to its original technique of handling sort-like
information, which abounds in mathematical texts.

5 Conclusion

SAD is a powerful system and its power lies in its reasoning facility. Experi-
ments show that, for example, the specific strategy of definition processing con-
tributes a lot to the success of the whole verification process. If we use definitions



straightforwardly — convert them into formula images and add the correspond-
ing premises to the sequent that goes into a prover — we have no chance to
verify the proof of Tarski fixed-point theorem as it is formulated above, even
when the winner of CASC competitions is chosen as the background prover.

SAD is not a perfect system (if any!). One can easily see how it may be
improved and developed. Our research and implementation plans with respect
to SAD are: extend ForTheL and SAD with some means to talk and reason
about second-order objects (functions, vectors, sequences) and operations on
them; develop and implement a mathematical library of SAD to accumulate
verified portions of mathematical knowledge and to support further (deeper)
advances in formalization.

References

1. Wang, H.: Towards mechanical mathematics. IBM J. of Research and Development
4 (1960) 2–22

2. Glushkov, V.M.: Some problems of automata theory and artificial intelligence (in
Russian). Kibernetika 2 (1970) 3–13

3. Lyaletski, A., Verchinine, K., Paskevich, A.: On verification tools implemented
in the System for Automated Deduction. In: Proc. 2nd CoLogNet Workshop on
Implementation Technology for Computational Logic Systems (ITCLS’2003), Pisa,
Italy (2003) 3–14

4. Lyaletski, A., Paskevich, A., Verchinine, K.: Theorem proving and proof verifica-
tion in the system SAD. In Asperti, A., Bancerek, G., Trybulec, A., eds.: Math-
ematical Knowledge Management: Third International Conference, MKM 2004.
Volume 3119 of Lecture Notes in Computer Science., Springer (2004) 236–250

5. Lyaletski, A., Paskevich, A., Verchinine, K.: SAD as a mathematical assistant —
how should we go from here to there? Journal of Applied Logic 4(4) (2006) 560–591

6. Vershinin, K., Paskevich, A.: ForTheL — the language of formal theories. Inter-
national Journal of Information Theories and Applications 7(3) (2000) 120–126

7. Trybulec, A., Blair, H.: Computer assisted reasoning with Mizar. In: Proc. 9th
International Joint Conference on Artificial Intelligence. (1985) 26–28

8. McCune, W.: Otter 3.0 reference manual and guide. Tech. Report ANL-94/6,
Argonne National Laboratory, Argonne, USA (1994)

9. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.:
SPASS version 2.0. In Voronkov, A., ed.: Automated Deduction: 18th Interna-
tional Conference, CADE-18. Volume 2392 of Lecture Notes in Computer Science.,
Springer-Verlag (2002) 275–279

10. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI
Communications 15(2–3) (2002) 91–110

11. Schulz, S.: System Description: E 0.81. In Basin, D., Rusinowitch, M., eds.:
Automated Reasoning: 2nd International Joint Conference, IJCAR 2004. Volume
3097 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2004) 223–228

12. Sutcliffe, G., Suttner, C.B., Yemenis, T.: The TPTP problem library. In Bundy,
A., ed.: Automated Deduction: 12th International Conference, CADE-12. Volume
814 of Lecture Notes in Computer Science., Springer-Verlag (1994) 252–266

13. Mammar, A.: Un environnement formel pour le développement d’application bases
de données. PhD thesis, Conservatoire National des Arts et Métiers, France (2002)


